(1)求過點(diǎn)的直線l的方程, 查看更多

 

題目列表(包括答案和解析)

設(shè)直線l的方程為(m2-2m-3)x+(2m2+m-1)y-2m+6-0,根據(jù)下列條件求m的值.
(1)直線l的斜率為1;
(2)直線l經(jīng)過點(diǎn)P(-1,1).

查看答案和解析>>

過點(diǎn)的直線交直線,過點(diǎn)的直線軸于點(diǎn),,.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)設(shè)直線l與相交于不同的兩點(diǎn)、,已知點(diǎn)的坐標(biāo)為(-2,0),點(diǎn)Q(0,)在線段的垂直平分線上且≤4,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

過點(diǎn)的直線交直線,過點(diǎn)的直線軸于點(diǎn),.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)直線l與相交于不同的兩點(diǎn)、,已知點(diǎn)的坐標(biāo)為(-2,0),點(diǎn)Q(0,)在線段的垂直平分線上且≤4,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

設(shè)直線l的方程為(m2-2m-3)x+(2m2+m-1)y-2m+6-0,根據(jù)下列條件求m的值.
(1)直線l的斜率為1;
(2)直線l經(jīng)過點(diǎn)P(-1,1).

查看答案和解析>>

設(shè)直線l的方程為(m2-2m-3)x+(2m2+m-1)y-2m+6-0,根據(jù)下列條件求m的值.
(1)直線l的斜率為1;
(2)直線l經(jīng)過點(diǎn)P(-1,1).

查看答案和解析>>

 

19.解:(1)平面ABC,AB平面ABC,∵AB.

平面,且AB平面,∴

平面.                                     

(2)BC∥,∴或其補(bǔ)角就是異面直線與BC所成的角.

由(1)知又AC=2,∴AB=BC=,∴.

中,由余弦定理知cos

=,即異面直線與BC所成的角的大小為      

 

(3)過點(diǎn)D作于E,連接CE,由三垂線定理知,故是二面角的平面角,

,∴E為的中點(diǎn),∴,又,由

,在RtCDE中,sin,所以二面角正弦值的大小為   

20.解:(1)因,,故可得直線方程為:

(2),用數(shù)學(xué)歸納法可證.

(3),

所以

21.解:(1)∵ 函數(shù)是R上的奇函數(shù)    ∴    ∴ ,由的任意性知∵ 函數(shù)處有極值,又

是關(guān)于的方程的根,即

   ∴  ②(4分)由①、②解

 

(2)由(1)知,

列表如下:

 

1

(1,3)

3

 

 

+

0

0

+

 

增函數(shù)

極大值1

減函數(shù)

極小值

增函數(shù)

9

上有最大值9,最小值

∵ 任意的都有,即

的取值范圍是

22.(1)

(2)由

           ①

設(shè)C,CD中點(diǎn)為M,則有,,

,又A(0,-1)且,,

(此時(shí))      ②

將②代入①得,即,

綜上可得

 

 


同步練習(xí)冊(cè)答案