題目列表(包括答案和解析)
(本小題滿分13分)
某校要從藝術節(jié)活動中所產生的4名書法比賽一等獎的同學和2名繪畫比賽一等獎的同學中選出2名志愿者,參加廣州亞運會的服務工作。求:
(1)選出的2名志愿者都是獲得書法比賽一等獎的同學的概率;
(2)選出的2名志愿者中1名是獲得書法比賽一等獎,另1名是獲得繪畫比賽一等獎的同學的概率.
(本小題滿分12分)
某校要用三輛汽車從新校區(qū)把教職工接到老校區(qū),已知從新校區(qū)到老校區(qū)有兩條公路,汽車走公路①堵車的概率為,不堵車的概率為;汽車走公路②堵車的概率為p,不堵車的概率為1—p。若甲、乙兩輛汽車走公路①,丙汽車由于其他原因走公路②,且三輛車是否堵車相互之間沒有影響。
(I)若三輛汽車中恰有一輛汽車被堵的概率為,求走公路②堵的概率;
(II)在(I)的條件下,求三輛汽車中恰有兩輛汽車被堵的概率
(本小題滿分12分)
某校為了探索一種新的教學模式,進行了一項課題實驗,乙班為實驗班,甲班為對比班,甲乙兩班的人數均為50人,一年后對兩班進行測試,成績如下表(總分:150分):
甲班
成績 |
|||||
頻數 |
4 |
20 |
15 |
10 |
1 |
乙班
成績 |
|||||
頻數 |
1 |
11 |
23 |
13 |
2 |
(Ⅰ)現(xiàn)從甲班成績位于內的試卷中抽取9份進行試卷分析,請問用什么抽樣方法更合理,并寫出最后的抽樣結果;
(Ⅱ)根據所給數據可估計在這次測試中,甲班的平均分是101.8,請你估計乙班的平均分,并計算兩班平均分相差幾分;
(Ⅲ)完成下面2×2列聯(lián)表,你能有97.5%的把握認為“這兩個班在這次測試中成績的差異與實施課題實驗有關”嗎?并說明理由。
|
成績小于100分[來源:ZXXK] |
成績不小于100分 |
合計 |
甲班 |
26 |
50 |
|
乙班 |
12 |
50 |
|
合計 |
36 |
64 |
100 |
附:
0.15 |
0.10 |
0.05[來源:Z§xx§k.Com] |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841[來源:Z.xx.k.Com] |
5.024 |
6.635 |
7.879 |
10.828 |
(本小題滿分12分)
某校高二年級共有1200名學生,為了分析某一次數學考試情況,今抽查100份試卷,成績分布如下表:
成績 |
|||||||||
人數 |
4 |
5 |
6 |
9 |
21 |
27 |
15 |
9 |
4 |
頻率 |
0.04 |
0.05 |
0.06 |
0.09 |
0.21 |
0.27 |
0.15 |
0.09 |
0.04 |
(Ⅰ)畫出頻率分布直方圖;
(Ⅱ)由頻率分布表估計這次考試及格(60分以上為及格)的人數;
(Ⅲ)由頻率分布直方圖估計這考試的平均分.
(本小題滿分12分)
某學校要對學生進行身體素質全面測試,對每位學生都要進行選考核(即共項測試,隨機選取項),若全部合格,則頒發(fā)合格證;若不合格,則重新參加下期的選考核,直至合格為止,若學生小李抽到“引體向上”一項,則第一次參加考試合格的概率為,第二次參加考試合格的概率為,第三次參加考試合格的概率為,若第四次抽到可要求調換項目,其它選項小李均可一次性通過.
(1)求小李第一次考試即通過的概率;
(2)求小李參加考核的次數分布列.
一、選擇題:1. D 2. B 3. A 4. D 5. C 6. B 7. D 8. A 9. C 10. B
11. A 12. B
二、填空題:13. 5;14. 18 ;15. 2 ;16. ③④
三、解答題:
17. 解:(1) 由已知得,即,………………2分
所以數列{}是以1為首項,公差2的等差數列.…………………………4分
故.………………………………………5分
(2) 由(1)知:,從而.…………………………7分
∴………………………………9分
……………………12分
18. 解:(1)……2分
……………………4分
∵∴………………………6分
(2) ∵
∴(k∈Z);…………………… 8分
∴≤x≤(k∈Z);…………………………10分
∴的單調遞增區(qū)間為[,] (k∈Z)……………………12分
19. (1)解:把4名獲書法比賽一等獎的同學編號為1,2,3,4,2名獲繪畫比賽一等獎的同學編號為5,6.從6名同學中任選兩名的所有可能結果如下:(1,2),(1,3),(1,4),(1,5), (1,6),(2,3),(2,4),(2,5), (2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15個.…………………4分
(1) 從6名同學中任選兩名,都是書法比賽一等獎的所有可能是:(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),共6個.…………………………6分
∴選出的兩名志愿者都是書法比賽一等獎的概率.…………………8分
(2) 從6名同學中任選兩名,一名是書法比賽一等獎,另一名是繪畫比賽一等獎的所有可能是:(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8個.………………………10分
∴選出的兩名志愿者一名是書法比賽一等獎,另一名是繪畫比賽一等獎的概率是.………………………12分
20. 解:(1) 取AB的中點G,連FG,可得FG∥AE,F(xiàn)G=AE,又CD⊥平面ABC,AE⊥平面ABC,∴CD∥AE,CD=AE………………………2分
∴FG∥CD,F(xiàn)G=CD,∵FG⊥平面ABC……………4分
∴四邊形CDFG是矩形,DF∥CG,CG平面ABC,
DF平面ABC∴DF∥平面ABC…………………6分
(2) Rt△ABE中,AE=
∵△ABC是正三角形,∴CG⊥AB,∴DF⊥AB…………9分
又DF⊥FG,∴DF⊥平面ABE,DF⊥AF,
∴AF⊥平面BDF,∴AF⊥BD.……………………12分
21. 解:(1)與圓相切,則,即,所以,
………………………3分
則由,消去y得: (*)
由Δ=得,∴,………………4分
(2) 設,由(*)得,.…………5分
則
.…………………………6分
由,所以.∴k=±1.
.,∴………………………7分
∴或.…………………8分
(3) 由(2)知:(*)為
由弦長公式得
… 10分
所以………………………12分
22. (1) 解:設x∈(0,1],則-x∈[-1,0),∴………………1分
∵是奇函數.∴=………………………2分
∴當x∈(0,1]時, ,…………………3分
∴ ………………………………4分
(2) 當x∈(0,1]時,∵…………………6分
∵,x∈(0,1],≥1,
∴.………………………7分
即.……………………………8分
∴在(0,1]上是單調遞增函數.…………………9分
(3) 解:當時, 在(0,1]上單調遞增. ,
∴ (不合題意,舍之),………………10分
當≤-1時,由,得.……………………………11分
如下表:
1
>0
0
<0
ㄊ
最大值
ㄋ
由表可知: ,解出.……………………12分
此時∈(0,1)………………………………13分
∴存在,使在(0,1]上有最大值-6.………………………14分
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com