圖1 圖2第12題圖絕密★啟用前濟(jì)南市2009年2月高三統(tǒng)一考試數(shù)學(xué) 試題第Ⅱ卷 注意事項(xiàng): 查看更多

 

題目列表(包括答案和解析)

已知二次函數(shù)yax2bxca≠0)的圖象如圖,則下列結(jié)論中正確的是              ;(填寫正確的序號(hào))

a>0    ②當(dāng)x>1時(shí),yx的增大而增大

c<0     ④3是方程ax2bxc=0的一個(gè)根

 

第12題圖

 

查看答案和解析>>

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052522132555243943/SYS201205252214097390331172_ST.files/image002.png">,部分對(duì)應(yīng)值如下表,的導(dǎo)函數(shù)的圖像如圖所示.下列命題中,真命題的個(gè)數(shù)為 (     ).

第12題圖            

① 函數(shù)是周期函數(shù);② 函數(shù)是減函數(shù);③ 如果當(dāng)時(shí),的最大值是,那么的最大值為;④ 當(dāng)時(shí),函數(shù)個(gè)零點(diǎn),其中真命題的個(gè)數(shù)是 (     )

   A.個(gè)        B. 個(gè)         C. 個(gè)         D. 個(gè)

 

查看答案和解析>>

如圖,在正方形內(nèi)有一扇形(見陰影部分),扇形對(duì)應(yīng)的圓心是正方形的一頂點(diǎn),半徑

為正方形的邊長(zhǎng)。在這個(gè)圖形上隨機(jī)撒一粒黃豆,它落在扇形外正方形內(nèi)的概率為__    _

(用分?jǐn)?shù)表示)

第12題圖

 

查看答案和解析>>

若某幾何體的三視圖(單位:)如圖所示,則此幾何體的體積是     ▲    

(第12題圖)

 
 


查看答案和解析>>

已知函數(shù)的定義域?yàn)?sub>,部分對(duì)應(yīng)值如下表.的導(dǎo)函數(shù)的圖像如圖所示.下列命題中,真命題的個(gè)數(shù)為 (   ).

第12題圖

① 函數(shù)是周期函數(shù);② 函數(shù)是減函數(shù);③ 如果當(dāng)時(shí),的最大值是,那么的最大值為;④ 當(dāng)時(shí),函數(shù)個(gè)零點(diǎn)。其中真命題的個(gè)數(shù)是 (   ).

  A.個(gè)           B. 個(gè)           C. 個(gè)          D. 個(gè)

查看答案和解析>>

一、選擇題:1. D 2. B  3. A  4. D  5. C  6. B  7. D  8. A  9. C  10. B 

11. A   12. B

二、填空題:13. 5;14. 18 ;15. 2 ;16. ③④

三、解答題:

17. 解:(1) 由已知得,即,………………2分

所以數(shù)列{}是以1為首項(xiàng),公差2的等差數(shù)列.…………………………4分

.………………………………………5分

(2) 由(1)知:,從而.…………………………7分

………………………………9分

……………………12分

18. 解:(1)……2分

……………………4分

………………………6分

(2) ∵

(k∈Z);…………………… 8分

≤x≤(k∈Z);…………………………10分

的單調(diào)遞增區(qū)間為[,] (k∈Z)……………………12分

19. (1)解:把4名獲書法比賽一等獎(jiǎng)的同學(xué)編號(hào)為1,2,3,4,2名獲繪畫比賽一等獎(jiǎng)的同學(xué)編號(hào)為5,6.從6名同學(xué)中任選兩名的所有可能結(jié)果如下:(1,2),(1,3),(1,4),(1,5), (1,6),(2,3),(2,4),(2,5), (2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15個(gè).…………………4分

(1) 從6名同學(xué)中任選兩名,都是書法比賽一等獎(jiǎng)的所有可能是:(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),共6個(gè).…………………………6分

∴選出的兩名志愿者都是書法比賽一等獎(jiǎng)的概率.…………………8分

(2) 從6名同學(xué)中任選兩名,一名是書法比賽一等獎(jiǎng),另一名是繪畫比賽一等獎(jiǎng)的所有可能是:(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8個(gè).………………………10分

∴選出的兩名志愿者一名是書法比賽一等獎(jiǎng),另一名是繪畫比賽一等獎(jiǎng)的概率是.………………………12分

20. 解:(1) 取AB的中點(diǎn)G,連FG,可得FG∥AE,F(xiàn)G=AE,又CD⊥平面ABC,AE⊥平面ABC,∴CD∥AE,CD=AE………………………2分

∴FG∥CD,F(xiàn)G=CD,∵FG⊥平面ABC……………4分

∴四邊形CDFG是矩形,DF∥CG,CG平面ABC,

DF平面ABC∴DF∥平面ABC…………………6分

(2) Rt△ABE中,AE=2a,AB=2a,F(xiàn)為BE中點(diǎn),∴AF⊥BE

∵△ABC是正三角形,∴CG⊥AB,∴DF⊥AB…………9分

又DF⊥FG,∴DF⊥平面ABE,DF⊥AF,

∴AF⊥平面BDF,∴AF⊥BD.……………………12分

21. 解:(1)與圓相切,則,即,所以,

………………………3分

則由,消去y得:  (*)

由Δ=,∴………………4分

(2) 設(shè),由(*)得,.…………5分

.…………………………6分

,所以.∴k=±1.

.,∴………………………7分

.…………………8分

(3) 由(2)知:(*)為

由弦長(zhǎng)公式得

 … 10分

所以………………………12分

22. (1) 解:設(shè)x∈(0,1],則-x∈[-1,0),∴………………1分

是奇函數(shù).∴=………………………2分

∴當(dāng)x∈(0,1]時(shí), ,…………………3分

………………………………4分

(2) 當(dāng)x∈(0,1]時(shí),∵…………………6分

,x∈(0,1],≥1,

.………………………7分

.……………………………8分

在(0,1]上是單調(diào)遞增函數(shù).…………………9分

(3) 解:當(dāng)時(shí), 在(0,1]上單調(diào)遞增. ,

(不合題意,舍之),………………10分

當(dāng)≤-1時(shí),由,得.……………………………11分

如下表:

1

>0

0

<0

 

最大值

   ㄋ

 

由表可知: ,解出.……………………12分

此時(shí)∈(0,1)………………………………13分

∴存在,使在(0,1]上有最大值-6.………………………14分

 

 

 


同步練習(xí)冊(cè)答案