A. B. C. D. 第5題圖 查看更多

 

題目列表(包括答案和解析)

如圖是長度為定值的平面的斜線段,點(diǎn)為斜足,若點(diǎn)在平面內(nèi)運(yùn)動(dòng),使得的面積為定值,則動(dòng)點(diǎn)P的軌跡是

A.圓            B.橢圓    

C一條直線      D兩條平行線

第Ⅱ卷(非選擇題  共110分)

填空題(本大題共6小題,每小題5分,共30分.)

查看答案和解析>>

給出下列命題:①函數(shù)y=cos(
2
3
x+
π
2
)
是奇函數(shù);②存在實(shí)數(shù)α,使得sin α+cos α=
3
2
;③若α、β是第一象限角且α<β,則tan α<tan β;④x=
π
8
是函數(shù)y=sin(2x+
4
)
的一條對稱軸方程;⑤函數(shù)y=sin(
2
3
x+
π
2
)
的圖象關(guān)于點(diǎn)(
π
12
,0)
成中心對稱圖形.其中正確的序號(hào)為( 。
A、①③B、②④C、①④D、④⑤

查看答案和解析>>

判斷下列各命題:
①若α,β是第一象限角,且α>β,則cosα<cosβ;
②α,β都是第一象限角,若sinα>sinβ,則cosα<cosβ;
③若函數(shù)f(x)=sin(
x+5π
2
),g(x)=cos(
x+5π
2
)
,則f(x)是偶函數(shù),g(x)是奇函數(shù)
④若函數(shù)y=sin2x的圖象向左平移
π
4
個(gè)單位,得到函數(shù)y=sin(2x+
π
4
)
的圖象.
其中正確有命題為( 。

查看答案和解析>>

給出下列五個(gè)命題:
(1)函數(shù)y=-sin(kπ+x)(k∈Z)是奇函數(shù);
(2)函數(shù)f(x)=tanx的圖象關(guān)于點(diǎn)(kπ+
π
2
,0)(k∈Z)
對稱;
(3)函數(shù)f(x)=sin|x|是最小正周期為π的周期函數(shù);
(4)設(shè)θ是第二象限角,則tan
θ
2
>cot
θ
2
,且sin
θ
2
>cos
θ
2

(5)函數(shù)y=cos2x+sinx的最小值是-1.
其中正確的命題是( 。

查看答案和解析>>

給出下列五個(gè)命題:
(1)函數(shù)y=-sin(kπ+x)(k∈Z)是奇函數(shù);
(2)函數(shù)f(x)=tanx的圖象關(guān)于點(diǎn)(kπ+
π
2
,0)(k∈Z)
對稱;
(3)函數(shù)f(x)=sin|x|是最小正周期為π的周期函數(shù);
(4)設(shè)θ是第二象限角,則tan
θ
2
>cot
θ
2
,且sin
θ
2
>cos
θ
2

(5)函數(shù)y=cos2x+sinx的最小值是-1.
其中正確的命題是( 。
A.(1)、(2)、(3)B.(1)、(2)、(5)C.(1)、(5)D.(1)、(3)、(4)

查看答案和解析>>

一、選擇題:1. D 2. B  3. A  4. D  5. C  6. B  7. D  8. A  9. C  10. B 

11. A   12. B

二、填空題:13. 5;14. 18 ;15. 2 ;16. ③④

三、解答題:

17. 解:(1) 由已知得,即,………………2分

所以數(shù)列{}是以1為首項(xiàng),公差2的等差數(shù)列.…………………………4分

.………………………………………5分

(2) 由(1)知:,從而.…………………………7分

………………………………9分

……………………12分

18. 解:(1)……2分

……………………4分

………………………6分

(2) ∵

(k∈Z);…………………… 8分

≤x≤(k∈Z);…………………………10分

的單調(diào)遞增區(qū)間為[,] (k∈Z)……………………12分

19. (1)解:把4名獲書法比賽一等獎(jiǎng)的同學(xué)編號(hào)為1,2,3,4,2名獲繪畫比賽一等獎(jiǎng)的同學(xué)編號(hào)為5,6.從6名同學(xué)中任選兩名的所有可能結(jié)果如下:(1,2),(1,3),(1,4),(1,5), (1,6),(2,3),(2,4),(2,5), (2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15個(gè).…………………4分

(1) 從6名同學(xué)中任選兩名,都是書法比賽一等獎(jiǎng)的所有可能是:(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),共6個(gè).…………………………6分

∴選出的兩名志愿者都是書法比賽一等獎(jiǎng)的概率.…………………8分

(2) 從6名同學(xué)中任選兩名,一名是書法比賽一等獎(jiǎng),另一名是繪畫比賽一等獎(jiǎng)的所有可能是:(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8個(gè).………………………10分

∴選出的兩名志愿者一名是書法比賽一等獎(jiǎng),另一名是繪畫比賽一等獎(jiǎng)的概率是.………………………12分

20. 解:(1) 取AB的中點(diǎn)G,連FG,可得FG∥AE,F(xiàn)G=AE,又CD⊥平面ABC,AE⊥平面ABC,∴CD∥AE,CD=AE………………………2分

∴FG∥CD,F(xiàn)G=CD,∵FG⊥平面ABC……………4分

∴四邊形CDFG是矩形,DF∥CG,CG平面ABC,

DF平面ABC∴DF∥平面ABC…………………6分

(2) Rt△ABE中,AE=2a,AB=2a,F(xiàn)為BE中點(diǎn),∴AF⊥BE

∵△ABC是正三角形,∴CG⊥AB,∴DF⊥AB…………9分

又DF⊥FG,∴DF⊥平面ABE,DF⊥AF,

∴AF⊥平面BDF,∴AF⊥BD.……………………12分

21. 解:(1)與圓相切,則,即,所以,

………………………3分

則由,消去y得:  (*)

由Δ=,∴,………………4分

(2) 設(shè),由(*)得,.…………5分

.…………………………6分

,所以.∴k=±1.

.,∴………………………7分

.…………………8分

(3) 由(2)知:(*)為

由弦長公式得

 … 10分

所以………………………12分

22. (1) 解:設(shè)x∈(0,1],則-x∈[-1,0),∴………………1分

是奇函數(shù).∴=………………………2分

∴當(dāng)x∈(0,1]時(shí), ,…………………3分

………………………………4分

(2) 當(dāng)x∈(0,1]時(shí),∵…………………6分

,x∈(0,1],≥1,

.………………………7分

.……………………………8分

在(0,1]上是單調(diào)遞增函數(shù).…………………9分

(3) 解:當(dāng)時(shí), 在(0,1]上單調(diào)遞增. ,

(不合題意,舍之),………………10分

當(dāng)≤-1時(shí),由,得.……………………………11分

如下表:

1

>0

0

<0

 

最大值

   ㄋ

 

由表可知: ,解出.……………………12分

此時(shí)∈(0,1)………………………………13分

∴存在,使在(0,1]上有最大值-6.………………………14分

 

 

 


同步練習(xí)冊答案