21. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an;

   (Ⅱ)設數(shù)列{an}的前n項和為Sn,證明:;

   (Ⅲ)設,證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

 

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

C

D

A

D

C

A

B

A

D

B

 

二、填空題

13.3    14.1   15.36π    16.

三、解答題

17.解:(1)

=………………………….2分

=.………………………………………4分

  • <bdo id="au684"><tbody id="au684"></tbody></bdo>
  • <small id="au684"></small>

    20090327

    (2)要使函數(shù)為偶函數(shù),只需

    …………………………………………….8分

    因為,

    所以.…………………………………………………………10分

    18.(1)由題意知隨機變量ξ的取值為2,3,4,5,6.

    ,,…………….2分

     ,

    .…………………………. …………4分

    所以隨機變量ξ的分布列為

    2

    3

    4

    5

    6

    P

    …………………………………………6分

    (2)隨機變量ξ的期望為

    …………………………12分

    19.解:(1)過點作,由正三棱柱性質知平面,

    連接,則在平面上的射影.

    ,,…………………………2分

    中點,又,

    所以的中點.

    ,

    連結,則,

    *為二面角

    的平面角.…4分

    中,

    =,

    .

    所以二面角的正切值為..…6分

    (2)中點,

    到平面距離等于到平面距離的2倍,

    又由(I)知平面,

    平面平面

    ,則平面,

    .

    故所求點到平面距離為.…………………………12分

    20.解:(1)函數(shù)的定義域為,因為

    ,

    所以 當時,;當時,.

    的單調遞增區(qū)間是;的單調遞減區(qū)間是.………6分

    (注: -1處寫成“閉的”亦可)

    (2)由得:

    ,則,

    所以時,,時,

    上遞減,在上遞增,…………………………10分

    要使方程在區(qū)間上只有一個實數(shù)根,則必須且只需

    解之得

    所以實數(shù)的取值范圍.……………………12分

    21.解:(1)設,

    因為拋物線的焦點,

    .……………………………1分

    ,…2分

    而點A在拋物線上,

    .……………………………………4分

    ………………………………6分

    (2)由,得,顯然直線,的斜率都存在且都不為0.

    的方程為,則的方程為.

        由 ,同理可得.………8分

     

    =.(當且僅當時取等號)

    所以的最小值是8.…………………………………………………………12分

    22.解:(1),由數(shù)列的遞推公式得

    ,,.……………………………………………………3分

    (2)

    =

    ==.……………………5分

    數(shù)列為公差是的等差數(shù)列.

    由題意,令,得.……………………7分

    (3)由(2)知,

    所以.……………………8分

    此時=

    =,……………………10分

    *

    *

     =

    >.……………………12分

     


    同步練習冊答案
  • <li id="au684"><dl id="au684"></dl></li>