15.設三棱錐的三個側面兩兩互相垂直.且側棱長都為.則其外接球的表面積為 . 查看更多

 

題目列表(包括答案和解析)

設三棱錐的三個側面兩兩互相垂直,且側棱長均為,則其外接球的表面積為____________.

查看答案和解析>>

設三棱錐的三個側面兩兩互相垂直,且側棱長均為cm,則其外接球的表面積為            

 

查看答案和解析>>

設三棱錐的三個側面兩兩互相垂直,且側棱長均為cm,則其外接球的表面積為            

查看答案和解析>>

設三棱錐的三個側面兩兩互相垂直,且側棱長均為cm,則其外接球的表面積為            

查看答案和解析>>

設三棱錐的3個側面兩兩互相垂直,且側棱長均為2
3
,則其外接球的表面積為( 。

查看答案和解析>>

 

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

C

D

A

D

C

A

B

A

D

B

 

二、填空題

13.3    14.1   15.36π    16.

三、解答題

17.解:(1)

=………………………….2分

=.………………………………………4分

<dfn id="yh26u"></dfn>
<s id="yh26u"><fieldset id="yh26u"></fieldset></s>

    20090327

    (2)要使函數(shù)為偶函數(shù),只需

    …………………………………………….8分

    因為,

    所以.…………………………………………………………10分

    18.(1)由題意知隨機變量ξ的取值為2,3,4,5,6.

    ,,…………….2分

     ,

    .…………………………. …………4分

    所以隨機變量ξ的分布列為

    2

    3

    4

    5

    6

    P

    …………………………………………6分

    (2)隨機變量ξ的期望為

    …………………………12分

    19.解:(1)過點作,由正三棱柱性質知平面,

    連接,則在平面上的射影.

    ,,…………………………2分

    中點,又,

    所以的中點.

    ,

    連結,則,

    *為二面角

    的平面角.…4分

    中,

    =,,

    .

    所以二面角的正切值為..…6分

    (2)中點,

    到平面距離等于到平面距離的2倍,

    又由(I)知平面

    平面平面,

    ,則平面,

    .

    故所求點到平面距離為.…………………………12分

    20.解:(1)函數(shù)的定義域為,因為

    ,

    所以 當時,;當時,.

    的單調(diào)遞增區(qū)間是的單調(diào)遞減區(qū)間是.………6分

    (注: -1處寫成“閉的”亦可)

    (2)由得:,

    ,則,

    所以時,,時,,

    上遞減,在上遞增,…………………………10分

    要使方程在區(qū)間上只有一個實數(shù)根,則必須且只需

    解之得

    所以實數(shù)的取值范圍.……………………12分

    21.解:(1)設,

    因為拋物線的焦點

    .……………………………1分

    ,…2分

    ,

    而點A在拋物線上,

    .……………………………………4分

    ………………………………6分

    (2)由,得,顯然直線,的斜率都存在且都不為0.

    的方程為,則的方程為.

        由 ,同理可得.………8分

     

    =.(當且僅當時取等號)

    所以的最小值是8.…………………………………………………………12分

    22.解:(1),由數(shù)列的遞推公式得

    ,.……………………………………………………3分

    (2)

    =

    ==.……………………5分

    數(shù)列為公差是的等差數(shù)列.

    由題意,令,得.……………………7分

    (3)由(2)知,

    所以.……………………8分

    此時=

    =,……………………10分

    *

    *

     =

    >.……………………12分

     


    同步練習冊答案