B.在上連續(xù)的函數(shù)若是增函數(shù).則對任意均有成立. 查看更多

 

題目列表(包括答案和解析)

已知下列命題:
①若f(x)為減函數(shù),則-f(x)為增函數(shù);
②若f(0)<f(4),則函數(shù)f(x)不是R上的減函數(shù);
③若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,4];
④設函數(shù)f(x)是在區(qū)間[a,b]上圖象連續(xù)的函數(shù),且f(a)•f(b)<0,則方程f(x)=0在區(qū)間[a,b]上至少有一實根.
⑤若函數(shù)f(x)=
(2-m)x+2m(x<1)
(m-1)|x+1|(x≥1)
在R上是增函數(shù),則m的取值范圍是1<m<2;
其中正確命題的序號有
①②④
①②④
(把所有正確命題的番號都填上)

查看答案和解析>>

已知定義在R上的連續(xù)奇函數(shù)f(x)滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),有下列命題:
①函數(shù)f(x)的圖象關于直線x=4k+2(k∈Z)對稱;
②函數(shù)f(x)的單調(diào)遞增區(qū)間為[8k-6,8k-2](k∈Z);
③函數(shù)f(x)在區(qū)間(-2012,2012)上恰有1006個極值點;
④若關于x的方程f(x)-m=0在區(qū)間[-8,8]上有根,則所有根的和可能為0或±4或±8.
其中真命題的個數(shù)有( )
A.1 個
B.2 個
C.3 個
D.4 個

查看答案和解析>>

已知定義在R上的連續(xù)奇函數(shù)f(x)滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),有下列命題:
①函數(shù)f(x)的圖象關于直線x=4k+2(k∈Z)對稱;
②函數(shù)f(x)的單調(diào)遞增區(qū)間為[8k-6,8k-2](k∈Z);
③函數(shù)f(x)在區(qū)間(-2012,2012)上恰有1006個極值點;
④若關于x的方程f(x)-m=0在區(qū)間[-8,8]上有根,則所有根的和可能為0或±4或±8.
其中真命題的個數(shù)有


  1. A.
    1 個
  2. B.
    2 個
  3. C.
    3 個
  4. D.
    4 個

查看答案和解析>>

(2006江西九校模擬)請閱讀下列命題:

A.直線與橢圓總有兩個交點;

B.的圖象可由f(x)=2sin3x按向量平移得到;

C.在R上連續(xù)的函數(shù)f(x)若是增函數(shù),則對于任意,均有,成立;

D.拋物線(a0)的焦點坐標是(,0)

以上4個命題中,真命題是________(按照原順序?qū)懗鏊姓婷}的代號)

查看答案和解析>>

(2012•成都一模)已知定義在R上的連續(xù)奇函數(shù)f(x)滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),有下列命題:
①函數(shù)f(x)的圖象關于直線x=4k+2(k∈Z)對稱;
②函數(shù)f(x)的單調(diào)遞增區(qū)間為[8k-6,8k-2](k∈Z);
③函數(shù)f(x)在區(qū)間(-2012,2012)上恰有1006個極值點;
④若關于x的方程f(x)-m=0在區(qū)間[-8,8]上有根,則所有根的和可能為0或±4或±8.
其中真命題的個數(shù)有( 。

查看答案和解析>>

一、選擇題  1--5 DDCBA  6--10 ADBCA  11-12 AB

二、填空題   13.     14.12   15.   16.AC          

三、解答題

17.解:(Ⅰ) ,

.   ,

, 

(Ⅱ)由余弦定理,得 

, 

所以的最小值為,當且僅當時取等號.

18、(Ⅰ)解法一:依據(jù)題意,因為隊伍從水路或陸路抵達災區(qū)的概率相等,則將“隊伍從水路或陸路抵達災區(qū)”視為同一個事件. 記“隊伍從水路或陸路抵達災區(qū)”為事件C,且B、C相互獨立,而且.……………………………………  2分

在5月13日恰有1支隊伍抵達災區(qū)的概率是

. ………………   5分

解法二:在5月13日恰有1支隊伍抵達災區(qū)的概率是

      .………………………………………………………………  5分

(Ⅱ)依據(jù)題意,因為隊伍從水路或陸路抵達災區(qū)的概率相等,則將“隊伍從水路或陸路抵達災區(qū)”視為同一個事件. 記“隊伍從水路或陸路抵達災區(qū)”為事件C,且B、C相互獨立,而且.

設5月13日抵達災區(qū)的隊伍數(shù)為,則=0、1、2、3、4. ………………  6分

由已知有:;…………………………………  7分

;…………………………  8分

;…………………  9分

;……………………… 10分

. …………………………………………………  10分

因此其概率分布為:

 

0

1

2

3

4

P

                                                        ………………  11分

所以在5月13日抵達災區(qū)的隊伍數(shù)的數(shù)學期望為:

=0×+ 1× + 2× + 3×+ 4×=.

答:在5月13日抵達災區(qū)的隊伍數(shù)的數(shù)學期望=. ………………  12分

19.(I)由已知a2a=-2, a3a2=-1, -1-(-2)=1 ∴an+1an=(a2a1)+(n-1)?1=n-3 

n≥2時,an=( anan1)+( an1an2)+…+( a3a2)+( a2a1)+ a1

          =(n-4)+(n-5) +…+(-1)+(-2)+6 =

n=1也合適.  ∴an=  (n∈N*) ……………………3分

又b1-2=4、b2-2=2 .而  ∴bn-2=(b1-2)?(n1即bn=2+8?(n

∴數(shù)列{an}、{bn}的通項公式為:an= ,bn=2+(n3……………  6分

(II)設

當k≥4時為k的增函數(shù),-8?(k也為k的增函數(shù),……………  8分

學科網(wǎng)(Zxxk.Com)f(4)= ∴當k≥4時ak-bk………………10分

又f(1)=f(2)=f(3)=0   ∴不存在k, 使f(k)∈(0,)…………12分

20、證(Ⅰ)因為側面,故

 在中,   由余弦定理有

學科網(wǎng)(Zxxk.Com)  故有 

  而     且平面

      ………………  4分

(Ⅱ)由

從而  且

 不妨設  ,則,則

  則

中有   從而(舍去)

的中點時,………………  8分

 法二:以為原點軸,設,則

  由得   

 即  

化簡整理得       或

重合不滿足題意

的中點

的中點使………………  8分

 (Ⅲ)取的中點的中點,的中點的中點

 連,連,連

 連,且為矩形,

   故為所求二面角的平面角………………  10分

學科網(wǎng)(Zxxk.Com)中,

………………  12分

法二:由已知, 所以二面角的平面角的大小為向量的夾角………………  10分

因為  

………………  12分

21.解:(I)由,  ∴直線l的斜率為,

l的方程為,∴點A坐標為(1,0)……… 2分

    則

整理,得……………………4分

∴動點M的軌跡C為以原點為中心,焦點在x軸上,長軸長為,短軸長為2的橢圓 …… 5分

(II)如圖,由題意知直線l的斜率存在且不為零,設l方程為y=kx-2)(k≠0)①

  • <big id="mekej"><dd id="mekej"></dd></big>

      高考資源網(wǎng)

      ,

      由△>0得0<k2<.  ………………  6分

       

      Ex1,y1),Fx2,y2),則 ②……………………………7分

      由此可得………………  8分

      由②知

      學科網(wǎng)(Zxxk.Com)

       

       

       

       

       

       

       

       

      .

      ∴△OBE與△OBF面積之比的取值范圍是(3-2,1).…………12分

      22解:(1)由題意知,的定義域為,

         …… 2分

      時, ,函數(shù)在定義域上單調(diào)遞增. … 3分

      (2) ①由(Ⅰ)得,當時,,函數(shù)無極值點.………………  5分                

      ②當時,有兩個不同解,                       

      時,,,

      此時 在定義域上的變化情況如下表:

      極小值

      由此表可知:時,有惟一極小值點,   …… 7分

      ii)   當時,0<<1    此時,,的變化情況如下表:

       

      極大值

      極小值

      由此表可知:時,有一個極大值和一個極小值點;…9分

      綜上所述:當時,有惟一最小值點

      時,有一個極大值點和一個極小值點

      …….10分

      (3)由(2)可知當時,函數(shù),此時有惟一極小值點

            …… 9分

                         …… 11分

      令函數(shù)       …… 12分

      …14分

       


      同步練習冊答案