⑤在一個(gè)2×2列聯(lián)表中.由計(jì)算得k2=13.079,則其兩個(gè)變量間有關(guān)系的可能性是90%.其中錯(cuò)誤的個(gè)數(shù)是A.1 B.2 C.3 D.4 查看更多

 

題目列表(包括答案和解析)

在一個(gè)2×2列聯(lián)表中,由其數(shù)據(jù)計(jì)算得K2的觀測(cè)值k=13.097,則兩個(gè)變量X與Y有關(guān)系的可能性為


  1. A.
    99.9%
  2. B.
    95%
  3. C.
    90%
  4. D.
    無(wú)關(guān)系

查看答案和解析>>

在一個(gè)2×2列聯(lián)表中,由其數(shù)據(jù)計(jì)算得k2=13.097,則其兩個(gè)變量間有關(guān)系的可能性為


  1. A.
    99%
  2. B.
    95%
  3. C.
    90%
  4. D.
    無(wú)關(guān)系

查看答案和解析>>

在一個(gè)2×2列聯(lián)表中,由其數(shù)據(jù)計(jì)算得K2的觀測(cè)值k=13.097,則兩個(gè)變量X與Y有關(guān)系的可能性為

[  ]
A.

99.9%

B.

95%

C.

90%

D.

無(wú)關(guān)系

查看答案和解析>>

在一個(gè)2×2列聯(lián)表中,由其數(shù)據(jù)計(jì)算得k2=13.097,則其兩個(gè)變量間有關(guān)系的可能性為

[  ]

A.99%

B.95%

C.90%

D.無(wú)關(guān)系

查看答案和解析>>

下列命題中正確的有

①設(shè)有一個(gè)回歸方程=2—3x,變量x增加一個(gè)單位時(shí),y平均增加3個(gè)單位;

②命題P:“”的否定P:“”;

③設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),若P(X>1)=p,則P(-1<X<0)=-p;

④在一個(gè)2×2列聯(lián)表中,由計(jì)算得k2=6.679,則有99%的把握確認(rèn)這兩個(gè)變量間有關(guān)系.

A.1個(gè)             B.2個(gè)              C.3個(gè)              D.4個(gè)

本題可以參考獨(dú)立性檢驗(yàn)臨界值表

P(K2≥k)

0.5

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.535

7.879

10.828

 

查看答案和解析>>

一、選擇題:(每題5分,共60分)

    1. 20080416

      二、填空題:每題5分,共20分)

      13.   14.;  15.a=-1或a=-;   

      16.①④

      17.解:(1),

      .又,.(6分)

      (2)由,

      ,.(6分)

      18.證法一:向量法

      證法二:(1)由已知有BC⊥AB,BC⊥B1B,∴BC⊥平面ABB1A1

      又A1E在平面ABB1A1內(nèi)     ∴有BC⊥A1E

      (2)取B1C的中點(diǎn)D,連接FD、BD

      ∵F、D分別是AC1、B1C之中點(diǎn),∴FD∥A1B1∥BE

      ∴四邊形EFBD為平行四邊形    ∴EF∥BD

      又BD平面BCC1B1   

      ∴EF∥面BCC1B1

      (3)過(guò)B1作B1H⊥CEFH,連BH,又B1B⊥面BAC,B1H⊥CE

      ∴BH⊥EC    ∴∠B1HB為二面角B1-EC-B平面角

      在Rt△BCE中有BE=,BC=,CE=,BH=

      又∠A1CA=      ∴BB1=AA1=AC=2   

      ∴tan∠B1HB=

      19.解(1)由已知圓的標(biāo)準(zhǔn)方程為:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

      設(shè)圓的圓心坐標(biāo)為(x,y),

      為參數(shù)),消參數(shù)得圓心的軌跡方程為:x2+y2=a2,(5分)

        (2)有方程組得公共弦的方

      程:圓X2+Y2=a2的圓心到公共弦的距離d=,(定值)

      ∴弦長(zhǎng)l=(定值)        (5分)

       

      20.(1)合格結(jié)果:0,1,2,3   相應(yīng)月盈利額X=-30,5,40,75

      (2)P(X≥40)=P(X=40)+P(X=75)=

      (3)

      X

      -30

      5

      40

      75

      P

       

      EX=54(元)    ∴6個(gè)月平均:6×54=324(元)

      21.(1)由已知:   

      依題意得:≥0對(duì)x∈成立

      ∴ax-1≥0,對(duì)x∈恒成立,即a≥,對(duì)x∈恒成立,

      ∴a≥(max,即a≥1.

      (2)當(dāng)a=1時(shí),,x∈[,2],若x∈,則

      若x∈,則,故x=1是函數(shù)f(x)在區(qū)間[,2]上唯一的極小值點(diǎn),也就是最小值點(diǎn),故f(x)min=f(1)=0.

      又f()=1-ln2,f(2)=- +ln2,f()-f(2)=-2ln2=,

      ∵e3>2.73=19.683>16,

      ∴f()-f(2)>0   

      ∴f()>f(2)  

      ∴f(x)在[,2]上最大值是f(

      ∴f(x)在[,2]最大1-ln2,最小0

      (3)當(dāng)a=1時(shí),由(1)知,f(x)=+lnx在

      當(dāng)n>1時(shí),令x=,則x>1     ∴f(x)>f(1)=0

      即ln>

      22.解:(1)設(shè)橢圓方程為(a>b>0)

           ∴橢圓方程

      (2) ∵直線∥DM且在y軸上的截距為m,∴y=x+m

      與橢圓交于A、B兩點(diǎn)

      ∴△=(2m)2-4(2m2-4)>0-2<m<2(m≠0)

      (3)設(shè)直線MA、MB斜率分別為k1,k2,則只要證:k1+k2=0

      設(shè)A(x1,y1),B(x2,y2),則k1=,k2=

      由x2+2mx+2m2-4=0得x1+x2=-2m,x1x2=2m2-4

      而k1+k2=+= (*)

      又y1=x1+m  y2=x2+m

      ∴(*)分子=(x1+m-1)(x2-2)+( x2+m -1)(x1-2)

      =x1x2+(m-2)(x1+x2)-4(m-1)

      =2m2-4+(m-2)(-m)-4(m-1)

        =0

      ∴k1+k2=0,證之.

       

       


      同步練習(xí)冊(cè)答案