(1)若在[1.+∞上是增函數(shù).求實數(shù)a的取值范圍, 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)=x3-3ax2+3b2x(a、b∈R).

(Ⅰ)若b=0,且f(x)在x=2處取得極小值,求實數(shù)a的值;

(Ⅱ)若函數(shù)f(x)在R上是增函數(shù),試探究a,b應(yīng)滿足什么條件;

(Ⅲ)若a<a<b,不等式對任意x∈(1,+∞)恒成立,求整數(shù)k的最大值.

查看答案和解析>>

設(shè)函數(shù)f(x)是定義在(-∞,+∞)上的增函數(shù),若不等式f(1-ax-x2)<f(2-a)對于任意x∈[0,1]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

設(shè)函數(shù)f(x)=2ax3-(6a+3)x2+12x(a∈R).

(1)當(dāng)a=1時,求函數(shù)f(x)的極大值和極小值;

(2)若函數(shù)f(x)在區(qū)間(-∞,1)上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

設(shè)函數(shù)f(x)=2ax3-(6a+3)x2+12x(a∈R).

(Ⅰ)當(dāng)a=1時,求函數(shù)f(x)的極大值和極小值;

(Ⅱ)若函數(shù)f(x)在區(qū)間(-∞,1)上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

設(shè)函數(shù)f(x)=2x+a·2-x-1(a為實數(shù)).

(1)若a<0,用函數(shù)單調(diào)性定義證明:y=f(x)在(-∞,+∞)上是增函數(shù);

(2)若a=0,y=g(x)的圖象與y=f(x)的圖象關(guān)于直線y=x對稱,求函數(shù)y=g(x)的解析式.

查看答案和解析>>

一、選擇題

1

2

3

4

5

6

7

8

9

10

11

12

A

C

B

D

A

B

A

B

B

A

C

A

二、填空題:

13. 2560,15     14.12        15.       16.①,④

三、解答題:17.解:設(shè)f(x)的二次項系數(shù)為m,其圖象上兩點為(1-x,)、B(1+x,)因為,,所以,由x的任意性得f(x)的圖象關(guān)于直線x=1對稱,若m>0,則x≥1時,f(x)是增函數(shù),若m<0,則x≥1時,f(x)是減函數(shù).

  ∵ ,,,

,

  ∴ 當(dāng)時,

,

  ∵ , ∴ 

  當(dāng)時,同理可得

  綜上:的解集是當(dāng)時,為;

  當(dāng)時,為,或

18.解:(1)由直方圖知,成績在內(nèi)的人數(shù)為:(人)

所以該班成績良好的人數(shù)為27人.

   (2)由直方圖知,成績在的人數(shù)為人,

設(shè)為、、;成績在 的人數(shù)為人,設(shè)為、、、.

時,有3種情況;

時,有6種情況;

分別在內(nèi)時,

 

 

A

B

C

D

x

xA

xB

xC

xD

y

yA

yB

yC

yD

z

zA

zB

zC

zD

共有12種情況.

所以基本事件總數(shù)為21種,事件“”所包含的基本事件個數(shù)有12種.

∴P()=              

19.解析:(1)取中點E,連結(jié)ME、

  ∴ ,MCEC. ∴ MC. ∴ ,M,C,N四點共面.

 。2)連結(jié)BD,則BD是在平面ABCD內(nèi)的射影.

  ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD.

  ∴ ∠CBD+∠BCM=90°.  ∴ MC⊥BD.  ∴ 

 。3)連結(jié),由是正方形,知

  ∵ ⊥MC, ∴ ⊥平面

  ∴ 平面⊥平面

20.解析:(1).∵ x≥1. ∴ ,

  當(dāng)x≥1時,是增函數(shù),其最小值為

  ∴ a<0(a=0時也符合題意). ∴ a≤0.

(2),即27-6a-3=0, ∴ a=4.

  ∴ 有極大值點,極小值點

  此時f(x)在,上時減函數(shù),在,+上是增函數(shù).

∴ f(x)在,上的最小值是,最大值是,(因).

21.解析:(1)證明:將,消去x,得

   ①由直線l與橢圓相交于兩個不同的點,得

所以    (2)解:設(shè)由①,得     因為 

所以,

消去y2,得 化簡,得 

若F是橢圓的一個焦點,則c=1,b2=a2-1

代入上式,解得    所以,橢圓的方程為    

22.解析:解:(1)由   

(2)假設(shè)存在實數(shù)t,使得為等差數(shù)列。則

存在t=1,使得數(shù)列為等差數(shù)列。

(3)由(1)、(2)知:為等差數(shù)列。

 

 


同步練習(xí)冊答案