(2)若交橢圓右準(zhǔn)線于M點(diǎn).交橢圓右準(zhǔn)線于N點(diǎn).求證:M.N兩點(diǎn)的縱坐標(biāo)之積為定值. 查看更多

 

題目列表(包括答案和解析)

橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)焦點(diǎn)F1(-2,0),右準(zhǔn)線方程x=8.
(1)求橢圓C的方程;
(2)若M為右準(zhǔn)線上一點(diǎn),A為橢圓C的左頂點(diǎn),連接AM交橢圓于點(diǎn)P,求
PM
AP
的取值范圍;
(3)設(shè)圓Q:(x-t)2+y2=1(t>4)與橢圓C有且只有一個(gè)公共點(diǎn),過橢圓C上一點(diǎn)B作圓Q的切線BS、BT,切點(diǎn)為S,T,求
BS
BT
的最大值.

查看答案和解析>>

精英家教網(wǎng)橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
與拋物線C2:x2=2py(p>0)的一個(gè)交點(diǎn)為M.拋物線C2在點(diǎn)M處的切線過橢圓C1的右焦點(diǎn)F.
(1)若M(2,
2
5
5
)
,求C1和C2的標(biāo)準(zhǔn)方程;
(II)若b=1,求p關(guān)于a的函數(shù)表達(dá)式p=f(a).

查看答案和解析>>

橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)焦點(diǎn)F1(-2,0),右準(zhǔn)線方程x=8.
(1)求橢圓C的方程;
(2)若M為右準(zhǔn)線上一點(diǎn),A為橢圓C的左頂點(diǎn),連接AM交橢圓于點(diǎn)P,求
PM
AP
的取值范圍;
(3)圓x2+(y-t)2=1上任一點(diǎn)為D,曲線C上任一點(diǎn)為E,如果線段DE長的最大值為2
5
+1
,求t的值.

查看答案和解析>>

橢圓C的中心為坐標(biāo)原點(diǎn)O,點(diǎn)A1,A2分別是橢圓的左、右頂點(diǎn),B為橢圓的上頂點(diǎn),一個(gè)焦點(diǎn)為F(
3
,0),離心率為
3
2
.點(diǎn)M是橢圓C上在第一象限內(nèi)的一個(gè)動點(diǎn),直線A1M與y軸交于點(diǎn)P,直線A2M與y軸交于點(diǎn)Q.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)若把直線MA1,MA2的斜率分別記作k1,k2,求證:k1k2=-
1
4

(III) 是否存在點(diǎn)M使|PB|=
1
2
|BQ|,若存在,求出點(diǎn)M的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
2
2
,橢圓右準(zhǔn)線與x軸交于E(2,0).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若M(2,t)(t>0),直線x+2y-10=0上有且僅有一點(diǎn)P使
PO
PM
=0
.求以O(shè)M為直徑的圓的方程;
(Ⅲ)設(shè)橢圓左、右焦點(diǎn)分別為F1,F(xiàn)2,過E點(diǎn)作不與y軸垂直的直線l與橢圓交于A,B兩個(gè)不同的點(diǎn)(B在E,A之間)若有
F1A
F2B
,求此時(shí)直線l的方程.

查看答案和解析>>


同步練習(xí)冊答案