[解題要點]求斜列二階等差數(shù)列1.3.5.7.--的通項公式.疊加.錯位相減等方法的靈活使用.[試題來源]嘉興市2008-2009第一學(xué)期期末卷18題:將全體正整數(shù)排成如下的三角形數(shù)陣:按照如圖的排列規(guī)律.第n行從左向右的第2個數(shù)為 n2-n+3 .解析:設(shè)a1=1,a2=3,a3=7,a4=13,--, a2-a1=2 a3-a2=4 a4-a3=6 --an-an-1=2n-2 疊加得:an=n2-n+1 ,所以第n行從左向右的第2個數(shù)為 n2-n+3 . 查看更多

 

題目列表(包括答案和解析)

(本小題滿分18分)已知數(shù)列{an}、{bn}、{cn}的通項公式滿足bn=an+1-an,cn=bn+1-bn(n∈N*?),若數(shù)列{bn}是一個非零常數(shù)列,則稱數(shù)列{an}是一階等差數(shù)列;若數(shù)列{cn}是一個非零常數(shù)列,則稱數(shù)列{an}是二階等差數(shù)列?(1)試寫出滿足條件a=1,b1=1,cn=1(n∈N*?)的二階等差數(shù)列{an}的前五項;(2)求滿足條件(1)的二階等差數(shù)列{an}的通項公式an;(3)若數(shù)列{an}首項a=2,且滿足cn-bn+1+3an=-2n+1(n∈N*?),求數(shù)列{an}的通項公式

查看答案和解析>>

己知數(shù)列{an},{bn},{cn}的通項滿足bn=an+1-an,cn=bn+1-bn(n∈N?),若{bn}是一個非零常數(shù)列,則稱數(shù)列{an}是一階等差數(shù)列;若{cn}是一個非零常數(shù)列,則稱數(shù)列{an}是二階等差數(shù)列,寫出滿足條件a1=1,b1=1,cn=1的二階等差數(shù)列.{an}的第5項即a5=
11
11
;數(shù)列{an}的通項公式an=
n2-n+2
2
n2-n+2
2

查看答案和解析>>

己知數(shù)列{an},{bn},{cn}的通項滿足bn=an+1-an,cn=bn+1-bn(n∈N?),若{bn}是一個非零常數(shù)列,則稱數(shù)列{an}是一階等差數(shù)列;若{cn}是一個非零常數(shù)列,則稱數(shù)列{an}是二階等差數(shù)列,寫出滿足條件a1=1,b1=1,cn=1的二階等差數(shù)列.{an}的第5項即a5=    ;數(shù)列{an}的通項公式an=   

查看答案和解析>>

己知數(shù)列{an},{bn},{cn}的通項滿足bn=an+1-an,cn=bn+1-bn(n∈N?),若{bn}是一個非零常數(shù)列,則稱數(shù)列{an}是一階等差數(shù)列;若{cn}是一個非零常數(shù)列,則稱數(shù)列{an}是二階等差數(shù)列,寫出滿足條件a1=1,b1=1,cn=1的二階等差數(shù)列.{an}的第5項即a5=______;數(shù)列{an}的通項公式an=______.

查看答案和解析>>

己知數(shù)列{an},{bn},{cn}的通項滿足bn=an+1-an,cn=bn+1-bn(n∈N?),若{bn}是一個非零常數(shù)列,則稱數(shù)列{an}是一階等差數(shù)列;若{cn}是一個非零常數(shù)列,則稱數(shù)列{an}是二階等差數(shù)列,寫出滿足條件a1=1,b1=1,cn=1的二階等差數(shù)列.{an}的第5項即a5=________;數(shù)列{an}的通項公式an=________.

查看答案和解析>>


同步練習(xí)冊答案