(Ⅲ)函數(shù)能否為上的單調(diào)函數(shù)?若能.求出的取值范圍,若不能.請說明理由. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=aln(1+ex)-(a+1)x,(其中a>0),點A(x1,f(x1),,B(x2•f(x2))C(x3,f(x3))從左到右依次是函數(shù)y=f(x)圖象上的不同點,且x1,x2,x3成等差數(shù)列.
(1)證明:函數(shù)f(x)在R上是單調(diào)遞減函數(shù);
(2)證明:△ABC為鈍角三角形;
(3)請問△ABC能否成為等腰三角形?若能,求△ABC面積的最大值;若不能,說明理由.

查看答案和解析>>

已知函數(shù)f(x)=x4+ax3+bx2+c,其圖象在y軸上的截距為-5,在區(qū)間[0,1]上單調(diào)遞增,在[1,2]上單調(diào)遞減,又當(dāng)x=0,x=2時取得極小值.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)能否找到垂直于x軸的直線,使函數(shù)f(x)的圖象關(guān)于此直線對稱,并證明你的結(jié)論;
*(Ⅲ)設(shè)使關(guān)于x的方程f(x)=λ2x2-5恰有三個不同實根的實數(shù)λ的取值范圍為集合A,且兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+2≤|x1-x2|對任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=x4+ax3+bx2+c,其圖象在y軸上的截距為-5,在區(qū)間[0,1]上單調(diào)遞增,在[1,2]上單調(diào)遞減,又當(dāng)x=0,x=2時取得極小值.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)能否找到垂直于x軸的直線,使函數(shù)f(x)的圖象關(guān)于此直線對稱,并證明你的結(jié)論;
*(Ⅲ)設(shè)使關(guān)于x的方程f(x)=λ2x2-5恰有三個不同實根的實數(shù)λ的取值范圍為集合A,且兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+2≤|x1-x2|對任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=x4+ax3+bx2+c,其圖象在y軸上的截距為-5,在區(qū)間[0,1]上單調(diào)遞增,在[1,2]上單調(diào)遞減,又當(dāng)x=0,x=2時取得極小值.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)能否找到垂直于x軸的直線,使函數(shù)f(x)的圖象關(guān)于此直線對稱,并證明你的結(jié)論;
*(Ⅲ)設(shè)使關(guān)于x的方程f(x)=λ2x2-5恰有三個不同實根的實數(shù)λ的取值范圍為集合A,且兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+2≤|x1-x2|對任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)滿足,是不為的實常數(shù)。

(1)若當(dāng)時,,求函數(shù)的值域;

(2)在(1)的條件下,求函數(shù)的解析式;

(3)若當(dāng)時,,試研究函數(shù)在區(qū)間上是否可能是單調(diào)函數(shù)?

若可能,求出的取值范圍;若不可能,請說明理由。

查看答案和解析>>


同步練習(xí)冊答案