證明:取中點.連接. 查看更多

 

題目列表(包括答案和解析)

一個空間幾何體的三視圖及部分數據如圖1所示.
精英家教網
(1)請在圖2中補充完整該幾何體的直觀圖,并求它的體積;
(2)證明:A1C⊥平面AB1C1
(3)若D是棱CC1的中點,在棱AB上取中點E,判斷DE是否平行于平面AB1C1,并證明你的結論.

查看答案和解析>>

(2007•武漢模擬)在一個單位中普查某種疾病,600個人去驗血,對這些人的血的化驗可以用兩種方法進行:
方法一:每個人的血分別化驗,這時需要化驗600次;
方法二:把每個人的血樣分成兩份,取k(k≥2)個人的血樣各一份混在一起進行化驗,如果結果是陰性的,那么對這k個人只作一次檢驗就夠了;如果結果陽性的,那么再對這k個人的另一份血樣逐個化驗,這時對這k個人共需作k+1次化驗.
假定對所有的人來說,化驗結果是陽性的概率是0.1,而且這些人的反應是獨立的.將每個人的血樣所需的檢驗次數作為隨機變量ξ.
(1)寫出方法二中隨機變量ξ的分布列,并求數學期望Eξ(用k表示);
(2)現有方法一和方法二中k分別取3、4、5共四種方案,請判斷哪種方案最好,并說明理由.(參考數據:取0.93=0.729,0.94=0.656,0.95=0.591)

查看答案和解析>>

從1,2,3,4這4個數中,方法一是不放回地任意取兩個數,方法二是有放回地任意取兩個數,則兩個數都是偶數的概率分別為

A.             B.          C.             D.

 

查看答案和解析>>

如圖,三棱錐中,側面底面, ,且,.(Ⅰ)求證:平面;

(Ⅱ)若為側棱PB的中點,求直線AE與底面所成角的正弦值.

【解析】第一問中,利用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以第二問中結合取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,又EH//PO,所以EH平面ABC ,

為直線AE與底面ABC 所成角,

 (Ⅰ) 證明:由用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以

………………………………………………6分

(Ⅱ)如圖, 取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,

因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,

又EH//PO,所以EH平面ABC ,

為直線AE與底面ABC 所成角,

………………………………………10分

又PO=1/2AC=,也所以有EH=1/2PO=,

由(Ⅰ)已證平面PBC,所以,即,

,

于是

所以直線AE與底面ABC 所成角的正弦值為

 

查看答案和解析>>

如圖,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四邊形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分別為CE、AB的中點.

(Ⅰ)證明:OD//平面ABC;

(Ⅱ)能否在EM上找一點N,使得ON⊥平面ABDE?若能,請指出點N的位置,并加以證明;若不能,請說明理由.

【解析】第一問:取AC中點F,連結OF、FB.∵F是AC的中點,O為CE的中點,

∴OF∥EA且OF=且BD=

∴OF∥DB,OF=DB,

∴四邊形BDOF是平行四邊形。

∴OD∥FB

第二問中,當N是EM中點時,ON⊥平面ABDE。           ………7分

證明:取EM中點N,連結ON、CM, AC=BC,M為AB中點,∴CM⊥AB,

又∵面ABDE⊥面ABC,面ABDE面ABC=AB,CM面ABC,

∴CM⊥面ABDE,∵N是EM中點,O為CE中點,∴ON∥CM,

∴ON⊥平面ABDE。

 

查看答案和解析>>


同步練習冊答案