(Ⅰ)求證函數(shù)為上的單調(diào)減函數(shù), 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)是定義在R上的單調(diào)函數(shù)且為奇函數(shù),又有f(1)=-2.

(Ⅰ)求證:f(x)是R上的單調(diào)遞減函數(shù);

(Ⅱ)解不等式f(2x)+f(2x-4x-1)>0.

查看答案和解析>>

函數(shù)f(x)是定義在R上的單調(diào)函數(shù)且為奇函數(shù),又有f(1)=-2.

(Ⅰ)求證:f(x)是R上的單調(diào)遞減函數(shù);

(Ⅱ)解不等式f(2x)+f(2x-4x-1)>0.

查看答案和解析>>

設(shè)函數(shù)f(x)=ax+
b
x
,曲線y=f(x)在點M(
3
,f(
3
))
處的切線方程為2x-3y+2
3
=0

(Ⅰ)求f(x)的解析式;       
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間
(Ⅲ)證明:曲線y=f(x)上任一點處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

若函數(shù)f(x)=x+
ax
定義域為(0,2],a為實數(shù).
(1)當(dāng)a=1時,證明f(x)在(0,1]單調(diào)遞減,在[1,2]單調(diào)遞增;
(2)若函數(shù)y=f(x)在(0,2]上是減函數(shù),求a的取值范圍;
(3)討論函數(shù)y=f(x)在x∈(0,2]上的值域.

查看答案和解析>>

設(shè)函數(shù)f(x)定義域為R且f(x)的值恒大于0,對于任意實數(shù)x,y,總有f(x+y)=f(x)•f(y),且當(dāng)x<0時,f(x)>1.
(1)求證:f(0)=1,且f(x)在R上單調(diào)遞減;
(2)設(shè)集合A={(x,y)|f(x2)•f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B≠∅,求a的取值范圍.

查看答案和解析>>

一.選擇題:DBBAC DBDBD

解析:1:由sinx>cosx得cosx-sinx<0, 即cos2x<0,所以:+kπ<2x<+kπ,選D.

 

2:∵復(fù)數(shù)3-i的一個輻角為-π/6,對應(yīng)的向量按順時針方向旋轉(zhuǎn)π/3,

所得向量對應(yīng)的輻角為-π/2,此時復(fù)數(shù)應(yīng)為純虛數(shù),對照各選擇項,選(B)。

3:由代入選擇支檢驗被排除;又由,被排除.故選.

4:依題意有,      ①                 ②

由①2-②×2得,,解得。

又由,得,所以不合題意。故選A。

5:令,這兩個方程的曲線交點的個數(shù)就是原方程實數(shù)解的個數(shù).由于直線的斜率為,又所以僅當(dāng)時,兩圖象有交點.由函數(shù)的周期性,把閉區(qū)間分成

個區(qū)間,在每個區(qū)間上,兩圖象都有兩個交點,注意到原點多計一次,故實際交點有個.即原方程有63個實數(shù)解.故選.

6:連接BE、CE則四棱錐E-ABCD的體積VE-ABCD=×3×3×2=6,又整個幾何體大于部分的體積,所求幾何體的體積V> VE-ABCD,選(D)

8:在同一直角坐標(biāo)系中,作出函數(shù)

的圖象和直線,它們相交于(-1,1)

和(1,1)兩點,由,得.

9:把各選項分別代入條件驗算,易知B項滿足條件,且的值最小,故選B。

10:P滿足|MP|=|NP|即P是MN的中垂線上的點,P點存在即中垂線與曲線有交點。MN的中垂線方程為2x+y+3=0,與中垂線有交點的曲線才存在點P滿足|MP|=|NP|,直線4x+2y-1=0與2x+y+3=0平行,故排除(A)、(C),

又由△=0,有唯一交點P滿足|MP|=|NP|,故選(D)。

二.填空題:11、; 12、; 13、;14、;15、2;

解析: 11:由題設(shè),此人猜中某一場的概率為,且猜中每場比賽結(jié)果的事件為相互獨立事件,故某人全部猜中即獲得特等獎的概率為。

12:分類求和,得

    ,故應(yīng)填

13:依拋物線的對稱性可知,大圓的圓心在y軸上,并且圓與拋物線切于拋物線的頂點,從而可設(shè)大圓的方程為 

    由  ,消去x,得        (*)

解出

    要使(*)式有且只有一個實數(shù)根,只要且只需要

    再結(jié)合半徑,故應(yīng)填

14.解:直線 化為直角坐標(biāo)方程是2x+y-1=0; 圓

圓心(1,0)到直線2x+y-1=0的距離是

15.(略)

三.解答題:

16、解:(Ⅰ)由,

 .-----------------------6分

(Ⅱ) 原式=  

 -----------------------12分

 

17、 (Ⅰ)證明:∵函數(shù)是奇函數(shù)  ∴

∴函數(shù)不是上的增函數(shù)--------------------------------2分

又函數(shù)上單調(diào)  ∴函數(shù)上的單調(diào)減函數(shù)-------------------4分

   (Ⅱ)由----------6分

由(Ⅰ)知函數(shù)上的單調(diào)減函數(shù)  ∴----------------8分

,--------------------------------10分

 ∴原不等式的解集為--------------------------12分

18、解:(Ⅰ)  

所以函數(shù)上是單調(diào)減函數(shù). …………………………4分

 (Ⅱ) 證明:據(jù)題意x1<x2<x3,

由(Ⅰ)知f (x1)>f (x2)>f (x3),  x2=…………………………6分

…………………8分

即ㄓ是鈍角三角形……………………………………..9分

(Ⅲ)假設(shè)ㄓ為等腰三角形,則只能是

 

  ①          …………………………………………..12分

而事實上,    ②

由于,故(2)式等號不成立.這與式矛盾.

所以ㄓ不可能為等腰三角形. ……………………………….14分

19、解:(Ⅰ)經(jīng)計算,,,.    …………….2分

當(dāng)為奇數(shù)時,,即數(shù)列的奇數(shù)項成等差數(shù)列,

;  …………………………….4分                   

當(dāng)為偶數(shù),,即數(shù)列的偶數(shù)項成等比數(shù)列,

.…………………………….6分                            

因此,數(shù)列的通項公式為. ………………………7分

(Ⅱ),                             

   ……(1)

 …(2)

(1)、(2)兩式相減,

     

   .……………………………….14分

20、(I)證明:連結(jié)OC

…………….1分

……….2分

中,由已知可得

……….3分

平面…………………………….5分

(II)解:如圖建立空間直角坐標(biāo)系,設(shè)平面ACD的法向量為

      

         …………………….7分

 

       令是平面ACD的一個法向量!.8分

       又

       點E到平面ACD的距離

       …………………….10分

(III)    

 

  則二面角A-CD-B的余弦值為。…………………………….14分

21.解 (Ⅰ)由,                 -----------1分

當(dāng)時,

此時,,   -----------2分

,所以是直線與曲線的一個切點;      -----------3分

當(dāng)時,,

此時,            -----------4分

,所以是直線與曲線的一個切點;       -----------5分

所以直線l與曲線S相切且至少有兩個切點;

對任意xR,

所以        ---------------------------------------------------------------------6分

因此直線是曲線的“上夾線”.        ----------7分

(Ⅱ)推測:的“上夾線”的方程為       ------9分

①先檢驗直線與曲線相切,且至少有兩個切點:設(shè):

 ,

,得:(kZ)             ------10分

當(dāng)時,

故:過曲線上的點(,)的切線方程為:

y-[]= [-()],化簡得:

即直線與曲線相切且有無數(shù)個切點.    -----12分

不妨設(shè)

②下面檢驗g(x)F(x)

g(x)-F(x)=

直線是曲線的“上夾線”.           -----14分


同步練習(xí)冊答案