如圖組合體中.三棱柱的側(cè)面是圓柱的軸截面.是圓柱底面圓周上不與.重合一個(gè)點(diǎn). 查看更多

 

題目列表(包括答案和解析)

如圖組合體中,三棱柱的側(cè)面是圓柱的軸截面,是圓柱底面圓周上不與重合一個(gè)點(diǎn)。

(Ⅰ)求證:無論點(diǎn)如何運(yùn)動(dòng),平面平面;

(Ⅱ)當(dāng)點(diǎn)是弧的中點(diǎn)時(shí),求四棱錐與圓柱的體積比。

查看答案和解析>>

如圖組合體中,三棱柱的側(cè)面是圓柱的軸截面,是圓柱底面圓周上不與重合一個(gè)點(diǎn)。

(Ⅰ)求證:無論點(diǎn)如何運(yùn)動(dòng),平面平面;
(Ⅱ)當(dāng)點(diǎn)是弧的中點(diǎn)時(shí),求四棱錐與圓柱的體積比。

查看答案和解析>>

如圖組合體中,三棱柱的側(cè)面是圓柱的軸截面,是圓柱底面圓周上不與、重合一個(gè)點(diǎn).

(Ⅰ)求證:無論點(diǎn)如何運(yùn)動(dòng),平面平面;

(Ⅱ)當(dāng)點(diǎn)是弧的中點(diǎn)時(shí),求四棱錐與圓柱的體積比

查看答案和解析>>

精英家教網(wǎng)如圖組合體中,三棱柱ABC-A1B1C1的側(cè)面ABB1A1是圓柱的軸截面,C是圓柱底面圓周上不與A,B重合一個(gè)點(diǎn).
(1)求證:無論點(diǎn)C如何運(yùn)動(dòng),平面A1BC⊥平面A1AC;
(2)當(dāng)C是弧AB的中點(diǎn)時(shí),求四棱錐A1-BCC1B1與圓柱的體積比.

查看答案和解析>>

如圖組合體中,三棱柱ABC-A1B1C1的側(cè)面ABB1A1是圓柱的軸截面,C是圓柱底面圓周上不與A,B重合一個(gè)點(diǎn).
(1)求證:無論點(diǎn)C如何運(yùn)動(dòng),平面A1BC⊥平面A1AC;
(2)當(dāng)C是弧AB的中點(diǎn)時(shí),求四棱錐A1-BCC1B1與圓柱的體積比.

查看答案和解析>>

一.選擇題:DCDDA  DDBBC

解析:1:復(fù)數(shù)i的一個(gè)輻角為900,利用立方根的幾何意義知,另兩個(gè)立方根的輻角分別是900+1200與900+2400,即2100與3300,故虛部都小于0,答案為(D)。 

2:把x=3代入不等式組驗(yàn)算得x=3是不等式組的解,則排除(A)、(B), 再把x=2代入不等式組驗(yàn)算得x=2是不等式組的解,則排除(D),所以選(C).

3:在題設(shè)條件中的等式是關(guān)于的對(duì)稱式,因此選項(xiàng)在A、B為等價(jià)命題都被淘汰,若選項(xiàng)C正確,則有,即,從而C被淘汰,故選D。

4:“對(duì)任意的x1、x2­,當(dāng)時(shí),”實(shí)質(zhì)上就是“函數(shù)單調(diào)遞減”的“偽裝”,同時(shí)還隱含了“有意義”。事實(shí)上由于時(shí)遞減,從而由此得a的取值范圍為。故選D。

5:由韋達(dá)定理知

.從而,故故選A。

6:當(dāng)點(diǎn)A為切點(diǎn)時(shí),所求的切線方程為,當(dāng)A點(diǎn)不是切點(diǎn)時(shí),所求的切線方程為故選D。

7:由已知條件可知,EF∥平面ABCD,則F到平面ABCD的距離為2, ∴VF-ABCD?32?2=6,而該多面體的體積必大于6,故選(D).

8:由二項(xiàng)展開式系數(shù)的性質(zhì)有C+C+…+C+C=2,選B.

9:取特殊數(shù)列=3,則==10,選(B).

10:本題是考查雙曲線漸近線夾角與離心率的一個(gè)關(guān)系式,故可用特殊方程來考察。取雙曲線方程為=1,易得離心率e=,cos=,故選C。

二.填空題:11、; 12、;13、;14、,;15、,

解析:11:因?yàn)?sub>(定值),于是,,又,  故原式=。

12:因?yàn)檎叫蔚拿娣e是16,內(nèi)切圓的面積是,所以豆子落入圓內(nèi)的概率是

13設(shè)k = 0,因拋物線焦點(diǎn)坐標(biāo)為把直線方程代入拋物線方程得,∴,從而

14.(略)

15.(略)

三.解答題:

16.解:(1)∵對(duì)任意,,∴--2分

    ∵不恒等于,∴--------------------------4分

   (2)設(shè)

時(shí),由  解得:

  解得其反函數(shù)為  -----------------7分

時(shí),由  解得:

解得函數(shù)的反函數(shù)為--------------------9分

------------------------------------------------------------------12分

 

17.解:(Ⅰ)依題意,有

,

因此,的解析式為;      …………………6分

(Ⅱ)由)得),解之得

由此可得

,

所以實(shí)數(shù)的取值范圍是.    …………………12分

 

18.(I)因?yàn)閭?cè)面是圓柱的的軸截面,是圓柱底面圓周上不與、重合一個(gè)點(diǎn),所以  …………………2分

又圓柱母線^平面 Ì平面,所以^,

,所以^平面,

因?yàn)?sub>Ì平面,所以平面平面;…………………………………6分

(II)設(shè)圓柱的底面半徑為,母線長(zhǎng)度為,

當(dāng)點(diǎn)是弧的中點(diǎn)時(shí),三角形的面積為,

三棱柱的體積為,三棱錐的體積為,

四棱錐的體積為,………………………………………10分

圓柱的體積為,                    ………………………………………………12分

四棱錐與圓柱的體積比為.……………………………………………14分

 

19.(Ⅰ)解:∵

        ∴

∴數(shù)列是首項(xiàng)為(),公比為2的等比數(shù)列,………………4分

,∴數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列

,∴…                      …………………7分

(Ⅱ)令代入得:

解得:

由此可猜想,即 …………………10分

下面用數(shù)學(xué)歸納法證明:

(1)當(dāng)n=1時(shí),等式左邊=1,右邊=,

當(dāng)n=1時(shí),等式成立,

(2)假設(shè)當(dāng)n=k時(shí),等式成立,即

當(dāng)n=k+1時(shí)

 

∴當(dāng)n=k+1時(shí),等式成立,

綜上所述,存在等差數(shù)列,使得對(duì)任意的成立。              …………………14分

 

 

20.解:(Ⅰ)∵軸,∴,由橢圓的定義得:,  ……………2分

,∴,

    ∴      ………………4分

,∴所求橢圓C的方程為.  …………………6分

(Ⅱ)由(Ⅰ)知點(diǎn)A(-2,0),點(diǎn)B為(0,-1),設(shè)點(diǎn)P的坐標(biāo)為

,,  由-4得-,

∴點(diǎn)P的軌跡方程為      …………………8分

設(shè)點(diǎn)B關(guān)于P的軌跡的對(duì)稱點(diǎn)為,則由軸對(duì)稱的性質(zhì)可得:

解得:,…………………10分

∵點(diǎn)在橢圓上,

,

整理得解得 …………………12分

∴點(diǎn)P的軌跡方程為,經(jīng)檢驗(yàn)都符合題設(shè),

∴滿足條件的點(diǎn)P的軌跡方程為.…………………14分

 

21.解(1)         …………………1分

,

當(dāng)時(shí),函數(shù)有一個(gè)零點(diǎn);

當(dāng)時(shí),,函數(shù)有兩個(gè)零點(diǎn)!3分

(2)令,則

 ,…………………5分

內(nèi)必有一個(gè)實(shí)根。即,使成立!8分

(3)       假設(shè)存在,由①知拋物線的對(duì)稱軸為x=-1,且

     ………………10分

由②知對(duì),都有

,                          …………………12分

當(dāng)時(shí),,其頂點(diǎn)為(-1,0)滿足條件①,又對(duì),都有,滿足條件②。

∴存在,使同時(shí)滿足條件①、②。     …………………14分


同步練習(xí)冊(cè)答案