規(guī)定.公民全月工資.薪金所得不超過(guò)800元的部分不必納稅.超過(guò)800元的部分為全月應(yīng)納稅所得額.此項(xiàng)稅款按下表分段累進(jìn)計(jì)算:全月應(yīng)納稅所得額稅率不超過(guò)500元的部分5%超過(guò)500元至2000元的部分10%超過(guò)2000元至5000元的部分15%--- 查看更多

 

題目列表(包括答案和解析)

6、《中華人民共和國(guó)個(gè)人所得稅法》規(guī)定,公民全月工資、薪金所得不超過(guò)800元的部分不必納稅,超過(guò)800元的部分為全月應(yīng)納稅所得額,此項(xiàng)稅款按下表分段累進(jìn)計(jì)算:
全月應(yīng)納稅所得額 稅率
不超過(guò)500元的部分 5%
超過(guò)500元至2000元的部分 10%
超過(guò)2000元至5000元的部分 15%
某人一月份應(yīng)交納此項(xiàng)稅款26.78元,則他的當(dāng)月工資、薪金所得介于( 。

查看答案和解析>>

16、《中華人民共和國(guó)個(gè)人所得稅法》規(guī)定,公民全月工資、薪金所得不超過(guò)2000元的部分不必納稅,超過(guò)2000元的部分為全月應(yīng)納稅所得額.此項(xiàng)稅款按下表分段累進(jìn)計(jì)算:某人一月份應(yīng)交納此項(xiàng)稅款135元,則他的當(dāng)月工資、薪金的稅后所得是
3600
元.
全月應(yīng)納稅所得額 稅率
不超過(guò)500元的部分 5%
超過(guò)500元至2000元的部分 10%
超過(guò)2000元至5000元的部分 15%

查看答案和解析>>

《中華人民共和國(guó)個(gè)人所得稅法》規(guī)定,公民全月工資、薪金所得不超過(guò)3 500元的部分不必納稅,超過(guò)3 500元的部分為全月納稅所得額,此項(xiàng)稅款按下表分段累進(jìn)計(jì)算.
級(jí)數(shù) 全月應(yīng)納稅額 稅率
1 不超過(guò)1500元部分 3%
2 超過(guò)1500元至4500元的部分 10%
3 超過(guò)4500元至9000元的部分 20%
某公司員工的最高工資為9 000元,請(qǐng)你為該公司的會(huì)計(jì)設(shè)計(jì)一個(gè)算法,要求輸入員工應(yīng)發(fā)工資數(shù),輸出其稅后工資額.(用IF語(yǔ)句)

查看答案和解析>>

《中華人民共和國(guó)個(gè)人所得稅法》規(guī)定:公民全月工資、薪金所得不超過(guò)3500元的部分不必納稅,超過(guò)3500元的部分為全月應(yīng)納稅所得額.此項(xiàng)稅款按全月應(yīng)納稅所得額稅率不超過(guò)1500元的部分3%超過(guò)1500元至4500元的部分10%超過(guò)4500元至9000元的部分
20%,右表分段累計(jì)計(jì)算:
全月應(yīng)納稅所得額 稅率
不超過(guò)1500元的部分 3%
超過(guò)1500元至4500元的部分 10%
超過(guò)4500元至9000元的部分 20%
某人9月份交納此項(xiàng)稅款505元,那么他當(dāng)月的工資、薪金總額為
8800
8800
元.

查看答案和解析>>

《中華人民共和國(guó)個(gè)人所得稅法》規(guī)定,公民全月工資、薪金所得不超過(guò)3500元的部分不必納稅,超過(guò)3500元的部分為全月應(yīng)納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:
全月應(yīng)納稅所得額 稅率(%)
不超過(guò)1500元的部分 3
超過(guò)1500元至4500元的部分 10
超過(guò)4500元至9000元的部分 20
(1)若某人全月工資、薪金所得為x(0<x≤12500)元,應(yīng)納稅為y元,寫(xiě)出y與x的函數(shù)關(guān)系式;
(2)若某人一月份納稅145元,那么他當(dāng)月的工資、薪金所得是多少元.

查看答案和解析>>

一.選擇題:DBBCB BCCCC

解析:1:因?yàn)?sub>=(2 -││)+ ,由選擇支知││<2,所以的實(shí)部為正數(shù),虛部為1,根據(jù)這個(gè)隱含條件,(A),(B),(C)均可篩去,所以選(D).

2:先將周期最小的選項(xiàng)(A)的周期T=代入檢驗(yàn),不成立則排除(A);再檢驗(yàn)(B)成立. 所以選(B).

3:∵∴可取代入四個(gè)選項(xiàng)驗(yàn)證,發(fā)現(xiàn)B錯(cuò)誤,∴應(yīng)選(B).

4:“的展開(kāi)式中各項(xiàng)系數(shù)之和為128” Þ 2n =128 Þ n=7;

     由通項(xiàng)公式Tr+1==,

   令7-=-3,解得r=6,此時(shí)T7= ,故選C

5:作兩直線(xiàn)的圖象,從圖中可以看出:

直線(xiàn)的傾斜角的取值范圍應(yīng)選(B).

 

 

 

 

6:取特殊數(shù)列=,排除(A)、(C)、(D). ∴選(B).

7:如圖所示,

∴柱體體積

    故選C.

8:由圖象可知,x=1時(shí)=1. 由此可排除(A)、(D);再由周期T=8,可排除(B).

∴應(yīng)選(C).

9:利用橢圓的定義可得故離心率故選C。

10:設(shè)某人當(dāng)月工資為1200元或1500元,則其應(yīng)納稅款分別為:4005%=20元,5005%+20010%=45元,可排除、、.故選.

二.填空題:11、2; 12、a>0且;13、;14、;15、7;

解析:11:因?yàn)榘?sub>任意一個(gè)元素的三元素集合共個(gè),所以在中,每個(gè)元素都出現(xiàn)了次,所以

,所以

。

 

12:由已知可畫(huà)出下圖,符合題設(shè),故a>0且

 

13:設(shè)P(x,y),則當(dāng)時(shí),點(diǎn)P的軌跡為,由此可得點(diǎn)P的橫坐標(biāo)。

又當(dāng)P在x軸上時(shí),,點(diǎn)P在y軸上時(shí),為鈍角,由此可得點(diǎn)P橫坐標(biāo)的取值范圍是:;

 14.解:在平面直角坐標(biāo)系中,曲線(xiàn)分別表示圓和直線(xiàn),易知

15.解: 由圓的性質(zhì)PA=PC?PB,得,PB=12,連接OA并反向延長(zhǎng)

交圓于點(diǎn)E,在直角三角形APD中可以求得PD=4,DA=2,故CD=3,

DB=8,J記圓的半徑為R,由于ED?DA=CD?DB

因此,(2R-2) ?2=3?8,解得R=7

三.解答題:

16.解:(Ⅰ)∵   ∴----①,----② 

由①得------③

在△ABC中,由正弦定理得=,設(shè)

,代入③得

 

   ∴  ∴,∵  ∴ ……………………6分

(Ⅱ) ∵,由余弦定理得,--④

 由②得-⑤  由④⑤得,∴=.  ……………………………12分

17.解:設(shè)該觀(guān)眾先答A題所獲獎(jiǎng)金為元,先答B(yǎng)題所獲獎(jiǎng)金為元,………………………1分

依題意可得可能取的值為:0, ,3, 的可能取值為:0,2,3

………………………2分

, , ,

,                       ………………………6分

,,   

                       ………………………10分

,即 

 ∴該觀(guān)眾應(yīng)先回答B(yǎng)題所獲獎(jiǎng)金的期望較大.        ……………………………12分

18.解:(Ⅰ)設(shè),由,解得,若矛盾,所以不合舍去。

。---------------------------------------------------------------------------6

(Ⅱ)圓,其圓心為C(3,-1),半徑,

∴直線(xiàn)OB的方程為,-----------------------------------------------------------------10

設(shè)圓心C(3,-1)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為(a,b),則

解得:,則所求的圓的方程為。-----------------------------14

19.(Ⅰ)證明:∵對(duì)任意的   ①

      ②…………1分

……………………2分

由②得

∴函數(shù)為奇函數(shù)………………………………3分

(Ⅱ)證明:(1)當(dāng)n=1時(shí)等式顯然成立

(2)假設(shè)當(dāng)n=k(k)時(shí)等式成立,即,…………4分

則當(dāng)n=k+1時(shí)有

,由①得………………6分

  ∴

∴當(dāng)n=k+1時(shí),等式成立。

綜(1)、(2)知對(duì)任意的,成立!8分

(Ⅲ)解:設(shè),因函數(shù)為奇函數(shù),結(jié)合①得

,……………………9分

又∵當(dāng)時(shí),

,∴

∴函數(shù)在R上單調(diào)遞減…………………………………………12分

 

由(2)的結(jié)論得,

,∴=-2n

∵函數(shù)為奇函數(shù),∴

∴  ,=2n!14分

 

 

20.解:(1)如圖,將側(cè)面BB1C1C繞棱CC1旋轉(zhuǎn)120°使其與側(cè)面AA1C1C在同一平面上,點(diǎn)B運(yùn)動(dòng)到點(diǎn)B2的位置,連接A1B2,則A1B2就是由點(diǎn)B沿棱柱側(cè)面經(jīng)過(guò)棱CC1到點(diǎn)A1的最短路線(xiàn)。                                            ……………………………………1分

設(shè)棱柱的棱長(zhǎng)為,則B2C=AC=AA1,

∵CD∥AA1       ∴D為CC1的中點(diǎn),……………………………2分

在Rt△A1AB2中,由勾股定理得,

 解得,……………………4分

  ……………………………………6分

(2)設(shè)A1B與AB1的交點(diǎn)為O,連結(jié)BB2,OD,則……………………………7分

平面,平面  ∴平面,

即在平面A1BD內(nèi)存在過(guò)點(diǎn)D的直線(xiàn)與平面ABC平行   ……………………………9分

 (3)連結(jié)AD,B1D ∵

   ∴……………………………11分

   ∵     ∴平面A1ABB1      ……………………………13分

又∵平面A1BD    ∴平面A1BD⊥平面A1ABB1  ……………………………………14分

 

21.解:(Ⅰ)…………………………………………1分

, ………………………………………………2分

  ……………………………………………………3分

(Ⅱ)k=,

對(duì)任意的,即對(duì)任意的恒成立……4分

等價(jià)于對(duì)任意的恒成立!5分

令g(x)=,h(x)=,

, …………………………………………6分

,當(dāng)且僅當(dāng)時(shí)“=”成立,…………7分

h(x)=在(0,1)上為增函數(shù),h(x)max<2……………………………8分

         ……………………………………………………………………9分

(Ⅲ)設(shè)……10分

,對(duì)恒成立…………………………11分

,對(duì)恒成立

對(duì)恒成立…………………………13分

解得……………………………………………………14分


同步練習(xí)冊(cè)答案