21. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點軸上移動時,求動點的軌跡方程;

(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記

(I)求數(shù)列的通項公式;

(II)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù)都有

(III)設(shè)數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一.選擇題:CCBAB BBADA

解析:1:由映射概念可知可得.故選.

2:如圖,+3,在中,由余弦定理得|+3|=||=,故選C。

3:取,由圖象可知,此時注水量大于容器容積的,故選B。

4:因為三角形中的最小內(nèi)角,故,由此可得y=sinx+cosx>1,排除B,C,D,故應(yīng)選A。

5:取x=4,y=?100%≈-8.3%,排除C、D;取x=30,y = ?100%≈77.2%,排除A,故選B。

6:等差數(shù)列的前n項和Sn=n2+(a1-)n可表示為過原點的拋物線,又本題中a1=-9<0, S3=S7,可表示如圖,由圖可知,n=,是拋物線的對稱軸,所以n=5是拋物線的對稱軸,所以n=5時Sn最小,故選B。

7:∵A,B是一對矛盾命題,故必有一真,從而排除錯誤支C,D。又由ab<0,可令a=1,b= -1,代入知B為真,故選B。

8:借助立體幾何的兩個熟知的結(jié)論:(1)一個正方體可以內(nèi)接一個正四面體;(2)若正方體的頂點都在一個球面上,則正方體的對角線就是球的直徑?梢钥焖偎愠銮虻陌霃,從而求出球的表面積為,故選A。

9:分析選擇支可知,四條曲線中有且只有一條曲線不符合要求,故可考慮找不符合條件的曲線從而篩選,而在四條曲線中②是一個面積最大的橢圓,故可先看②,顯然直線和曲線是相交的,因為直線上的點在橢圓內(nèi),對照選項故選D。

10:,從而對任意的,存在唯一的,使得為常數(shù)。充分利用題中給出的常數(shù)10,100。令,當(dāng)時,,由此得故選A。

二.填空題:11、;   12、;   13、;

14、;  15、;

解析:11:不等式等價于,也就是,所以,從而應(yīng)填

12: ,不論的值如何,同號,所以

13:題設(shè)條件等價于點(0,1)在圓內(nèi)或圓上,或等價于點(0,1)到圓的圓心的距離不超過半徑,∴

14.解:由正弦定理得,∴所求直線的極坐標(biāo)方程為.

 

15.解:,

 

三.解答題:

16.解:(Ⅰ)函數(shù) 要有意義需滿足:,解得,   …………………………………3分

函數(shù)要有意義需滿足,即,

解得  …………………………………6分

(Ⅱ)由(Ⅰ)可知,,

………………………12分

 

17.解:(I)因為是等比數(shù)列,

       又…………………………………………2分

      

       ∴是以a為首項,為公比的等比數(shù)列.………………………………6分

   (II)(I)中命題的逆命題是:若是等比數(shù)列,則也是等比數(shù)列,是假命題.

                           ……………………………………………………………8分

       設(shè)的公比為

       又

       是以1為首項,q為公比的等比數(shù)列,

       是以為首項,q為公比的等比數(shù)列.……………………10分

       即為1,a,qaq,q2aq2,…

       但當(dāng)qa2時,不是等比數(shù)列

       故逆命題是假命題.……………………………………………………………………12分

       另解:取a=2,q=1時,

      

       因此是等比數(shù)列,而不是等比數(shù)列.

       故逆命題是假命題.……………………………………………………………………12分

 

18.解:(1)設(shè)選對一道“可判斷2個選項是錯誤的”題目為事件A,“可判斷1個選項是錯誤的”該題選對為事件B,“不能理解題意的”該題選對為事件C.則---

所以得40分的概率………………………………4分

(2) 該考生得20分的概率=……………………5分

該考生得25分的概率:

=  ……………………6分

該考生得30分的概率:==   --------------7分

該考生得35分的概率:

=            ……………………9分

  ∴該考生得25分或30分的可能性最大………………………………11分

(3)該考生所得分數(shù)的數(shù)學(xué)期望=

………………………………14分

19.解:(Ⅰ)由知圓心C的坐標(biāo)為--------------(1分)

∵圓C關(guān)于直線對稱

∴點在直線上  -----------------(2分)

即D+E=-2,------------①且-----------------②-----------------(3分)

又∵圓心C在第二象限   ∴  -----------------(4分)

由①②解得D=2,E=-4     -----------------(5分)

∴所求圓C的方程為:  ------------------(6分)

  (Ⅱ)切線在兩坐標(biāo)軸上的截距相等且不為零,設(shè)  -----------(7分)

        圓C:

圓心到切線的距離等于半徑,

                   

。                    ------------------(12分)

所求切線方程     ------------------(14分)

 

20.(Ⅰ)證明:在正方體中,∵平面∥平面

      平面平面,平面平面

      ∴.-------------------------------------3分

 (Ⅱ)解:如圖,以D為原點分別以DA、DC、DD1

x、y、z軸,建立空間直角坐標(biāo)系,則有

D1(0,0,2),E(2,1,2),F(xiàn)(0,2,1),

,

      設(shè)平面的法向量為

     則由,和,得,

     取,得,,∴ ------------------------------6分

又平面的法向量為(0,0,2)

    ∴截面與底面所成二面角的余弦值為. ------------------9分

(Ⅲ)解:設(shè)所求幾何體的體積為V,

        ∵,,

        ∴,,

       ∴,

--------------------------11分

故V棱臺

                        

     ∴V=V正方體-V棱臺. ------------------14分

 

21.解:(Ⅰ)由題意,在[]上遞減,則解得

所以,所求的區(qū)間為[-1,1]         ………………………4分

(Ⅱ)取,即不是上的減函數(shù)。

不是上的增函數(shù)

所以,函數(shù)在定義域內(nèi)不單調(diào)遞增或單調(diào)遞減,從而該函數(shù)不是閉函數(shù)。-------9分

(Ⅲ)若是閉函數(shù),則存在區(qū)間[],在區(qū)間[]上,函數(shù)的值域為[],即為方程的兩個實數(shù)根,

即方程有兩個不等的實根。

當(dāng)時,有,解得。

當(dāng)時,有,無解。

綜上所述,---------------------------------------------14分


同步練習(xí)冊答案