A. B. C. D.10第二部分 非選擇題 查看更多

 

題目列表(包括答案和解析)

2006年普通高等學(xué)校招生全國統(tǒng)一考試(北京卷)

理科綜合能力測試試題卷(生物部分)

1.以下不能說明細(xì)胞全能性的實(shí)驗(yàn)是

A.胡蘿卜韌皮部細(xì)胞培育出植株            B.紫色糯性玉米種子培育出植株

C.轉(zhuǎn)入抗蟲基因的棉花細(xì)胞培育出植株      D.番茄與馬鈴薯體細(xì)胞雜交后培育出植株

2.夏季,在晴天、陰天、多云、高溫干旱四種天氣條件下,獼猴桃的凈光合作用強(qiáng)度(實(shí)際光合速率與呼吸速率之差)變化曲線不同,表示晴天的曲線圖是

3.用蔗糖、奶粉和經(jīng)蛋白酶水解后的玉米胚芽液,通過乳酸菌發(fā)酵可生產(chǎn)新型酸奶,下列相關(guān)敘述錯誤的是

A.蔗糖消耗量與乳酸生成量呈正相關(guān)        B.酸奶出現(xiàn)明顯氣泡說明有雜菌污染

C.應(yīng)選擇處于對數(shù)期的乳酸菌接種          D.只有奶粉為乳酸菌發(fā)酵提供氮源

4.用32P標(biāo)記了玉米體細(xì)胞(含20條染色體)的DNA分子雙鏈,再將這些細(xì)胞轉(zhuǎn)入不含32P的培養(yǎng)基中培養(yǎng),在第二次細(xì)胞分裂的中期、后期,一個細(xì)胞中的染色體總條數(shù)和被32P標(biāo)記的染色體條數(shù)分別是

A.中期20和20、后期40和20             B.中期20和10、后期40和20

C.中期20和20、后期40和10             D.中期20和10、后期40和10

29.(12分)為合理利用水域資源,某調(diào)查小組對一個開放性水庫生態(tài)系統(tǒng)進(jìn)行了初步調(diào)查,部分?jǐn)?shù)據(jù)如下表:

(1)浮游藻類屬于該生態(tài)系統(tǒng)成分中的          ,它處于生態(tài)系統(tǒng)營養(yǎng)結(jié)構(gòu)中的         

(2)浮游藻類數(shù)量少,能從一個方面反映水質(zhì)狀況好。調(diào)查數(shù)據(jù)分析表明:該水體具有一定的       能力。

(3)浮游藻類所需的礦質(zhì)營養(yǎng)可來自細(xì)菌、真菌等生物的          ,生活在水庫淤泥中的細(xì)菌代謝類型主要為          。

(4)該水庫對游人開放一段時間后,檢測發(fā)現(xiàn)水體己被氮、磷污染。為確定污染源是否來自游人,應(yīng)檢測

          處浮游藻類的種類和數(shù)量。

30.(18分)為豐富植物育種的種質(zhì)資源材料,利用鈷60的γ射線輻射植物種子,篩選出不同性狀的突變植株。請回答下列問題:

(1)鈷60的γ輻射用于育種的方法屬于          育種。

(2)從突變材料中選出高產(chǎn)植株,為培育高產(chǎn)、優(yōu)質(zhì)、抗鹽新品種,利用該植株進(jìn)行的部分雜交實(shí)驗(yàn)如下:

①控制高產(chǎn)、優(yōu)質(zhì)性狀的基因位于        對染色體上,在減數(shù)分裂聯(lián)會期        (能、不能)配對。

②抗鹽性狀屬于          遺傳。

(3)從突變植株中還獲得了顯性高蛋白植株(純合子)。為驗(yàn)證該性狀是否由一對基因控制,請參與實(shí)驗(yàn)設(shè)計并完善實(shí)驗(yàn)方案:

①步驟1:選擇                    雜交。

預(yù)期結(jié)果:                                                 

②步驟2:                                                  。

預(yù)期結(jié)果:                                                  。

③觀察實(shí)驗(yàn)結(jié)果,進(jìn)行統(tǒng)計分析:如果                    相符,可證明該性狀由一對基因控制。

 

31.(18分)為研究長跑中運(yùn)動員體內(nèi)的物質(zhì)代謝及其調(diào)節(jié),科學(xué)家選擇年齡、體重相同,身體健康的8名男性運(yùn)動員,利用等熱量的A、B兩類食物做了兩次實(shí)驗(yàn)。

實(shí)驗(yàn)還測定了糖和脂肪的消耗情況(圖2)。

請據(jù)圖分析回答問題:

(1)圖1顯示,吃B食物后,          濃度升高,引起          濃度升高。

(2)圖1顯示,長跑中,A、B兩組胰島素濃度差異逐漸          ,而血糖濃度差異卻逐漸          ,A組血糖濃度相對較高,分析可能是腎上腺素和          也參與了對血糖的調(diào)節(jié),且作用相對明顯,這兩種激素之間具有          作用。

(3)長跑中消耗的能量主要來自糖和脂肪。研究表明腎上腺素有促進(jìn)脂肪分解的作用。從能量代謝的角度分析圖2,A組脂肪消耗量比B組          ,由此推測A組糖的消耗量相對          。

(4)通過檢測尿中的尿素量,還可以了解運(yùn)動員在長跑中          代謝的情況。

 

參考答案:

1.B              2.B              3.D             4.A

29.(12分)

    (1)生產(chǎn)者    第一營養(yǎng)級

    (2)自動調(diào)節(jié)(或自凈化)

    (3)分解作用    異養(yǎng)厭氧型

    (4)入水口

30.(18分)

    (1)誘變

    (2)①兩(或不同)    不能

    ②細(xì)胞質(zhì)(或母系)

    (3)①高蛋白(純合)植株    低蛋白植株(或非高蛋白植株)

    后代(或F1)表現(xiàn)型都是高蛋白植株

    ②測交方案:

    用F1與低蛋白植株雜交

    后代高蛋白植株和低蛋白植株的比例是1:1

    或自交方案:

    F1自交(或雜合高蛋白植株自交)

    后代高蛋白植株和低蛋白植株的比例是3:1

    ③實(shí)驗(yàn)結(jié)果    預(yù)期結(jié)果

31.(18分)

    (1)血糖    胰島素

    (2)減小    增大    胰高血糖素    協(xié)同

    (3)高    減少

    (4)蛋白質(zhì)

 

 

                                             

 

查看答案和解析>>

一.選擇題:CCBAB BBADA

解析:1:由映射概念可知可得.故選.

2:如圖,+3,在中,由余弦定理得|+3|=||=,故選C。

3:取,由圖象可知,此時注水量大于容器容積的,故選B。

4:因為三角形中的最小內(nèi)角,故,由此可得y=sinx+cosx>1,排除B,C,D,故應(yīng)選A。

5:取x=4,y=?100%≈-8.3%,排除C、D;取x=30,y = ?100%≈77.2%,排除A,故選B。

6:等差數(shù)列的前n項(xiàng)和Sn=n2+(a1-)n可表示為過原點(diǎn)的拋物線,又本題中a1=-9<0, S3=S7,可表示如圖,由圖可知,n=,是拋物線的對稱軸,所以n=5是拋物線的對稱軸,所以n=5時Sn最小,故選B。

7:∵A,B是一對矛盾命題,故必有一真,從而排除錯誤支C,D。又由ab<0,可令a=1,b= -1,代入知B為真,故選B。

8:借助立體幾何的兩個熟知的結(jié)論:(1)一個正方體可以內(nèi)接一個正四面體;(2)若正方體的頂點(diǎn)都在一個球面上,則正方體的對角線就是球的直徑。可以快速算出球的半徑,從而求出球的表面積為,故選A。

9:分析選擇支可知,四條曲線中有且只有一條曲線不符合要求,故可考慮找不符合條件的曲線從而篩選,而在四條曲線中②是一個面積最大的橢圓,故可先看②,顯然直線和曲線是相交的,因?yàn)橹本上的點(diǎn)在橢圓內(nèi),對照選項(xiàng)故選D。

10:,從而對任意的,存在唯一的,使得為常數(shù)。充分利用題中給出的常數(shù)10,100。令,當(dāng)時,,由此得故選A。

二.填空題:11、;   12、;   13、;

14、;  15、;

解析:11:不等式等價于,也就是,所以,從而應(yīng)填

12: ,不論的值如何,同號,所以

13:題設(shè)條件等價于點(diǎn)(0,1)在圓內(nèi)或圓上,或等價于點(diǎn)(0,1)到圓的圓心的距離不超過半徑,∴。

14.解:由正弦定理得,∴所求直線的極坐標(biāo)方程為.

 

15.解:,

 

三.解答題:

16.解:(Ⅰ)函數(shù) 要有意義需滿足:,解得,   …………………………………3分

函數(shù)要有意義需滿足,即,

解得  …………………………………6分

(Ⅱ)由(Ⅰ)可知,

,………………………12分

 

17.解:(I)因?yàn)?sub>是等比數(shù)列,

       又…………………………………………2分

      

       ∴是以a為首項(xiàng),為公比的等比數(shù)列.………………………………6分

   (II)(I)中命題的逆命題是:若是等比數(shù)列,則也是等比數(shù)列,是假命題.

                           ……………………………………………………………8分

       設(shè)的公比為

       又

       是以1為首項(xiàng),q為公比的等比數(shù)列,

       是以為首項(xiàng),q為公比的等比數(shù)列.……………………10分

       即為1,a,qaq,q2,aq2,…

       但當(dāng)qa2時,不是等比數(shù)列

       故逆命題是假命題.……………………………………………………………………12分

       另解:取a=2,q=1時,

      

       因此是等比數(shù)列,而不是等比數(shù)列.

       故逆命題是假命題.……………………………………………………………………12分

 

18.解:(1)設(shè)選對一道“可判斷2個選項(xiàng)是錯誤的”題目為事件A,“可判斷1個選項(xiàng)是錯誤的”該題選對為事件B,“不能理解題意的”該題選對為事件C.則---

所以得40分的概率………………………………4分

(2) 該考生得20分的概率=……………………5分

該考生得25分的概率:

=  ……………………6分

該考生得30分的概率:==   --------------7分

該考生得35分的概率:

=            ……………………9分

  ∴該考生得25分或30分的可能性最大………………………………11分

(3)該考生所得分?jǐn)?shù)的數(shù)學(xué)期望=

………………………………14分

19.解:(Ⅰ)由知圓心C的坐標(biāo)為--------------(1分)

∵圓C關(guān)于直線對稱

∴點(diǎn)在直線上  -----------------(2分)

即D+E=-2,------------①且-----------------②-----------------(3分)

又∵圓心C在第二象限   ∴  -----------------(4分)

由①②解得D=2,E=-4     -----------------(5分)

∴所求圓C的方程為:  ------------------(6分)

  (Ⅱ)切線在兩坐標(biāo)軸上的截距相等且不為零,設(shè)  -----------(7分)

        圓C:

圓心到切線的距離等于半徑,

                   

。                    ------------------(12分)

所求切線方程     ------------------(14分)

 

20.(Ⅰ)證明:在正方體中,∵平面∥平面

      平面平面,平面平面

      ∴.-------------------------------------3分

 (Ⅱ)解:如圖,以D為原點(diǎn)分別以DA、DC、DD1

x、y、z軸,建立空間直角坐標(biāo)系,則有

D1(0,0,2),E(2,1,2),F(xiàn)(0,2,1),

,

      設(shè)平面的法向量為

     則由,和,得,

     取,得,,∴ ------------------------------6分

又平面的法向量為(0,0,2)

    ∴截面與底面所成二面角的余弦值為. ------------------9分

(Ⅲ)解:設(shè)所求幾何體的體積為V,

        ∵,,

        ∴,,

       ∴

--------------------------11分

故V棱臺

                        

     ∴V=V正方體-V棱臺. ------------------14分

 

21.解:(Ⅰ)由題意,在[]上遞減,則解得

所以,所求的區(qū)間為[-1,1]         ………………………4分

(Ⅱ)取,即不是上的減函數(shù)。

,

不是上的增函數(shù)

所以,函數(shù)在定義域內(nèi)不單調(diào)遞增或單調(diào)遞減,從而該函數(shù)不是閉函數(shù)。-------9分

(Ⅲ)若是閉函數(shù),則存在區(qū)間[],在區(qū)間[]上,函數(shù)的值域?yàn)閇],即,為方程的兩個實(shí)數(shù)根,

即方程有兩個不等的實(shí)根。

當(dāng)時,有,解得。

當(dāng)時,有,無解。

綜上所述,---------------------------------------------14分


同步練習(xí)冊答案