題目列表(包括答案和解析)
已知
(1)求函數(shù)在上的最小值
(2)對一切的恒成立,求實數(shù)a的取值范圍
(3)證明對一切,都有成立
【解析】第一問中利用
當時,在單調(diào)遞減,在單調(diào)遞增,當,即時,,
第二問中,,則設(shè),
則,單調(diào)遞增,,,單調(diào)遞減,,因為對一切,恒成立,
第三問中問題等價于證明,,
由(1)可知,的最小值為,當且僅當x=時取得
設(shè),,則,易得。當且僅當x=1時取得.從而對一切,都有成立
解:(1)當時,在單調(diào)遞減,在單調(diào)遞增,當,即時,,
…………4分
(2),則設(shè),
則,單調(diào)遞增,,,單調(diào)遞減,,因為對一切,恒成立, …………9分
(3)問題等價于證明,,
由(1)可知,的最小值為,當且僅當x=時取得
設(shè),,則,易得。當且僅當x=1時取得.從而對一切,都有成立
ax2+bx+c |
ax2+bx+c |
A.不等式ax2+bx+c≥0對任意實數(shù)恒成立 |
B.不存在x0∈R,使ax02+bx0+c<0 |
C.函數(shù)y=ax2+bx+c的值域是[0,+∞)的子集 |
D.函數(shù)y=ax2+bx+c的最小值大于0 |
9 |
sin2x |
x-
| ||
x-
|
1 |
x-1 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com