題目列表(包括答案和解析)
設(shè)f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱(chēng)f(x)為[0,1]上的單峰函數(shù),x*為峰點(diǎn),包含峰點(diǎn)的區(qū)間為含峰區(qū)間.對(duì)任意的[0,1]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長(zhǎng)度的方法:
(1)證明:對(duì)任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),則(0,x2)為含峰區(qū)間;若f(x1)≤f(x2),則(x1,1)為含峰區(qū)間;
(2)對(duì)給定的r(0<r<0.5),證明存在x1,x2∈(0,1),滿(mǎn)足x2-x1≥2r,使得由(1)所確定的含峰區(qū)間的長(zhǎng)度不大于0.5+r;
(3)選取x1,x2∈(0,1),x1<x2,由(1)可確定含峰區(qū)間為(0,x2)或(x1,1),在所得的含峰區(qū)間內(nèi)選取x3,由x3與x1或x3與x2類(lèi)似地可確定一個(gè)新的含峰區(qū)間.在第一次確定的含峰區(qū)間為(0,x2)的情況下,試確定x1,x2,x3的值,滿(mǎn)足兩兩之差的絕對(duì)值不小于0.02,且使得新的含峰區(qū)間的長(zhǎng)度縮短到0.34.
(區(qū)間長(zhǎng)度等于區(qū)間的右端點(diǎn)與左端點(diǎn)之差)
設(shè)f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱(chēng)f(x)為[0,1]上的單峰函數(shù),x*為峰點(diǎn),包含峰點(diǎn)的區(qū)間為含峰區(qū)間.
對(duì)任意的[0,l]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長(zhǎng)度的方法.
(1)證明:對(duì)任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),則(0,x2)為含峰區(qū)間;若f(x1)≤f(x2),則(x*,1)為含峰區(qū)間;
(2)對(duì)給定的r(0<r<0.5=,證明:存在x1,x2∈(0,1),滿(mǎn)足x2-x1≥2r,使得由(Ⅰ)所確定的含峰區(qū)間的長(zhǎng)度不大于0.5+r;
(3)選取x1,x2∈(0,1),x1<x2,由(Ⅰ)可確定含峰區(qū)間為(0,x2)或(x1,1),在所得的含峰區(qū)間內(nèi)選取x3,由x3與x1或x3與x2類(lèi)似地可確定一個(gè)新的含峰區(qū)間.在第一次確定的含峰區(qū)間為(0,x2)的情況下,試確定x1,x2,x3的值,滿(mǎn)足兩兩之差的絕對(duì)值不小于0.02,且使得新的含峰區(qū)間的長(zhǎng)度縮短到0.34.(區(qū)間長(zhǎng)度等于區(qū)間的右端點(diǎn)與左端點(diǎn)之差)
f(x)是定義在( 0,+∞)上的增函數(shù),且f() = f(x)-f(y)
(1)求f(1)的值.
(2)若f(6)= 1,解不等式 f( x+3 )-f() <2 .
f(x)是定義在( 0,+∞)上的增函數(shù),且f() = f(x)-f(y)
(1)求f(1)的值.
(2)若f(6)= 1,解不等式 f( x+3)-f() <2 .
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com