所以 .又=22.所以=2010.------8分 查看更多

 

題目列表(包括答案和解析)

某魚塘2009年初有魚10(萬條),每年年終將捕撈當年魚總量的50%,在第二年年初又將有一部分新魚放入魚塘.根據(jù)養(yǎng)魚的科學技術知識,該魚塘中魚的總量不能超過19.5(萬條)(不考慮魚的自然繁殖和死亡等因素對魚總量的影響),所以該魚塘采取對放入魚塘的新魚數(shù)進行控制,該魚塘每年只放入新魚b(萬條).
(I)設第n年年初該魚塘的魚總量為an(年初已放入新魚b(萬條),2010年為第一年),求a1及an+1與an間的關系;
(Ⅱ)當b=10時,試問能否有效控制魚塘總量不超過19.5(萬條)?若有效,說明理由;若無效,請指出哪一年初開始魚塘中魚的總量超過19.5(萬條).

查看答案和解析>>

某市2009年初擁有汽車40萬量,每年年終將有當年汽車總量的5%報廢,在第二年年初又將有一部分新車上牌,但為了保持該市空氣質量,需要該市的汽車擁有量不超過60萬量,故該市采取限制新上牌車輛數(shù)的措施進行控制,所以該市每年只有b萬輛新上牌車.
(1)求第n年年初該市車輛總數(shù)an(2010年為第一年);
(2)當b=4時,試問該項措施能否有效?若有效,說明理由;若無效,請指出哪一年初開始無效.
(參考數(shù)據(jù):lg2=0.30,lg3=0.48,lg19=1.28,lg21=1.32)

查看答案和解析>>

所有真約數(shù)(除本身之外的正約數(shù))的和等于它本身的正整數(shù)叫做完全數(shù).
如:6=1+2+3;28=1+2+4+7+14;496=1+2+4+8+16+31+62+124+248.
已經(jīng)證明:若2n-1是質數(shù),則2n-1(2n-1)是完全數(shù),n∈N*.請寫出一個四位完全數(shù)
 
;又6=2×3,所以6的所有正約數(shù)之和可表示為(1+2)•(1+3);28=22×7,所以28的所有正約數(shù)之和可表示為(1+2+22)•(1+7);
按此規(guī)律,496的所有正約數(shù)之和可表示為
 

查看答案和解析>>

在二項式定理這節(jié)教材中有這樣一個性質:Cn0+Cn1+Cn2+Cn3+…Cnn=2n,n∈N
(1)計算1•C30+2•C31+3•C32+4•C33的值方法如下:
設S=1•C30+2•C31+3•C32+4•C33又S=4•C33+3•C32+2•C31+1•C30
相加得2S=5•C30+5•C31+5•C32+5•C33即2S=5•23
所以2S=5•22=20利用類似方法求值:1•C20+2•C21+3•C22,1•C40+2•C41+3•C42+4•C43+5•C44
(2)將(1)的情況推廣到一般的結論,并給予證明
(3)設Sn是首項為a1,公比為q的等比數(shù)列{an}的前n項的和,求S1Cn0+S2Cn1+S3Cn2+S4Cn3+…+Sn+1Cnn,n∈N.

查看答案和解析>>

(本小題滿分13分)

某魚塘2009年初有魚10(萬條),每年年終將捕撈當年魚總量的50%,在第二年年初又將有一部分新魚放入魚塘. 根據(jù)養(yǎng)魚的科學技術知識,該魚塘中魚的總量不能超過19.5(萬條)(不考慮魚的自然繁殖和死亡等因素對魚總量的影響),所以該魚塘采取對放入魚塘的新魚數(shù)進行控制,該魚塘每年只放入新魚(萬條).

(I)設第年年初該魚塘的魚總量為(年初已放入新魚(萬條),2010年為第一年),求間的關系;

(Ⅱ)當時,試問能否有效控制魚塘總量不超過19.5(萬條)?若有效,說明理由;若無效,請指出哪一年初開始魚塘中魚的總量超過19.5(萬條).

 

查看答案和解析>>


同步練習冊答案