題目列表(包括答案和解析)
從以下兩個小題中選做一題(只能做其中一個,做兩個按得分最低的記分).(甲)一水池有2個進水口,1個出水口,每口進出水速度如圖甲、乙所示.某天0點到6點,該水池的蓄水量如圖丙所示.(至少打開一個水口)
給出以下3個論斷:①0點到3點只進水不出水;②3點到4點不進水只出水;③4點到6點不進水不出水.則一定能確定正確的論斷序號是________.
(乙)深圳市的一種特色水果上市時間僅能持續(xù)5個月,預測上市初期和后期會因供不應求使價格呈連續(xù)上漲態(tài)勢,而中期又將出現供大于求使價格連續(xù)下跌,現有三種價格模擬函數.①f(x)p·qx;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p
(以上三式中p,q均為常數,且q>1,x=0表示4月1日,x=1表示5月1日,依次類推).
(1)為準確研究其價格走勢,應選________種價格模擬函數.
(2)若f(x)=4,f(2)=6,預測該果品在________月份內價格下跌.
解:能否投中,那得看拋物線與籃圈所在直線是否有交點。因為函數的零點是-2與4,籃圈所在直線x=5在4的右邊,拋物線又是開口向下的,所以投不中。
某城市出租汽車的起步價為10元,行駛路程不超出4km,則按10元的標準收租車費若行駛路程超出4km,則按每超出lkm加收2元計費(超出不足1km的部分按lkm計).從這個城市的民航機場到某賓館的路程為15km.某司機常駕車在機場與此賓館之間接送旅客,由于行車路線的不同以及途中停車時間要轉換成行車路程(這個城市規(guī)定,每停車5分鐘按lkm路程計費),這個司機一次接送旅客的行車路程ξ是一個隨機變量,
(1)他收旅客的租車費η是否也是一個隨機變量?如果是,找出租車費η與行車路程ξ的關系式;
(2)已知某旅客實付租車費38元,而出租汽車實際行駛了15km,問出租車在途中因故停車累計最多幾分鐘?這種情況下,停車累計時間是否也是一個隨機變量?
已知正項數列的前n項和滿足:,
(1)求數列的通項和前n項和;
(2)求數列的前n項和;
(3)證明:不等式 對任意的,都成立.
【解析】第一問中,由于所以
兩式作差,然后得到
從而得到結論
第二問中,利用裂項求和的思想得到結論。
第三問中,
又
結合放縮法得到。
解:(1)∵ ∴
∴
∴ ∴ ………2分
又∵正項數列,∴ ∴
又n=1時,
∴ ∴數列是以1為首項,2為公差的等差數列……………3分
∴ …………………4分
∴ …………………5分
(2) …………………6分
∴
…………………9分
(3)
…………………12分
又
,
∴不等式 對任意的,都成立.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com