題目列表(包括答案和解析)
如圖是單位圓上的點(diǎn),分別是圓與軸的兩交點(diǎn),為正三角形.
(1)若點(diǎn)坐標(biāo)為,求的值;
(2)若,四邊形的周長為,試將表示成的函數(shù),并求出的最大值.
【解析】第一問利用設(shè)
∵ A點(diǎn)坐標(biāo)為∴ ,
(2)中 由條件知 AB=1,CD=2 ,
在中,由余弦定理得
∴
∵ ∴ ,
∴ 當(dāng)時(shí),即 當(dāng) 時(shí) , y有最大值5. .
在中,,分別是角所對邊的長,,且
(1)求的面積;
(2)若,求角C.
【解析】第一問中,由又∵∴∴的面積為
第二問中,∵a =7 ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:
又C為內(nèi)角 ∴
解:(1) ………………2分
又∵∴ ……………………4分
∴的面積為 ……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴ ……………………9分
又由余弦定理得:
又C為內(nèi)角 ∴ ……………………12分
另解:由正弦定理得: ∴ 又 ∴
已知△的內(nèi)角所對的邊分別為且.
(1) 若, 求的值;
(2) 若△的面積 求的值.
【解析】本小題主要考查正弦定理、余弦定理、同角三角函數(shù)的基本關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力。第一問中,得到正弦值,再結(jié)合正弦定理可知,,得到(2)中即所以c=5,再利用余弦定理,得到b的值。
解: (1)∵, 且, ∴ . 由正弦定理得, ∴.
(2)∵ ∴. ∴c=5
由余弦定理得,
∴
已知向量=(),=(,),其中().函數(shù),其圖象的一條對稱軸為.
(I)求函數(shù)的表達(dá)式及單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對邊,S為其面積,若=1,b=l,S△ABC=,求a的值.
【解析】第一問利用向量的數(shù)量積公式表示出,然后利用得到,從而得打解析式。第二問中,利用第一問的結(jié)論,表示出A,結(jié)合正弦面積公式和余弦定理求解a的值。
解:因?yàn)?/p>
由余弦定理得,……11分故
1 |
x2+1 |
1 |
x |
x | … | |||||||
f(x)-
|
… | |||||||
g(x)-
|
… |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com