(I) 當a為何值時.直線與圓C相切, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知,圓C:,直線.

(1) 當a為何值時,直線與圓C相切;

(2) 當直線與圓C相交于A、B兩點,且時,求直線的方程.

 

查看答案和解析>>

已知,圓C,直線.

(1) 當a為何值時,直線與圓C相切;

(2) 當直線與圓C相交于A、B兩點,且時,求直線的方程.

查看答案和解析>>

(本小題滿分10分)已知,圓C:,直線.

(1) 當a為何值時,直線與圓C相切;

(2) 當直線與圓C相交于A、B兩點,且時,求直線的方程.

 

查看答案和解析>>

已知,圓C:,直線.

(1) 當a為何值時,直線與圓C相切;

(2) 當直線與圓C相交于A、B兩點,且時,求直線的方程.

 

查看答案和解析>>

已知圓C:,直線.

(1)當為何值時,直線與圓C相切;

(2)當直線與圓C相交于A、B兩點,且時,求直線的方程.

 

查看答案和解析>>

一、選擇題:

CADCB  AABBD  CD

二、填空題

(13);  (14)8;   (15);  (16)3.

三、解答題

(17)解:將圓C的方程配方得標準方程為,

則此圓的圓心為(0 , 4),半徑為2.

(Ⅰ) 若直線與圓C相切,則有. 解得.  ………………6分

(Ⅱ) 解:過圓心C作CD⊥AB,則根據(jù)題意和圓的性質,得

 解得.

∴直線的方程是.  ………………12分

(18)解:(Ⅰ)由題意知此平面區(qū)域表示的是以構成的三角形及其內部,且△是直角三角形, 所以覆蓋它的且面積最小的圓是其外接圓,故圓心是(2,1),半徑是,

所以圓的方程是.    ………………6分

 (Ⅱ)設直線的方程是:.

  因為,所以圓心到直線的距離是, 即.

解得:.                          ………………………………11分

所以直線的方程是. ………………12分

(19)解:設過點T(3,0)的直線交拋物線于點A、B .

(Ⅰ)當直線的鈄率不存在時,直線的方程為,

此時, 直線與拋物線相交于點A(3,)().B(3,-),∴=3.   …….............4分

(Ⅱ)當直線的鈄率存在時,設直線的方程為,

其中,由.     …………………….….6分

又 ∵ , ∴,

                                                    ………………………………….10分

綜上所述,命題“若直線過點T(3,0),則=3” 是真命題.  ………………….12分

(20)解:(Ⅰ)由的中點,

設A、B兩點的坐標分別為

.

,

點的坐標為.               …………………………4分

  又點在直線上,  .

,       ………………6分

   (Ⅱ)由(Ⅰ)知,不妨設橢圓的一個焦點坐標為,

關于直線上的對稱點為

則有.         ………………10分

由已知.

,∴所求的橢圓的方程為 .     ………………12分

(21)解:(Ⅰ)由已知條件,直線的方程為

代入橢圓方程得

整理得  、    ……………………………………3分

直線與橢圓有兩個不同的交點等價于,

解得.即的取值范圍為.………………6分

 

(Ⅱ)設,則

由方程①,.   ②

. 、      …………………………………9分

所以共線等價于,

將②③代入上式,解得

由(Ⅰ)知,故沒有符合題意的常數(shù).………………12分

 

 

(22)解:(Ⅰ)設點,則,由得:

,化簡得.……4分

(Ⅱ)(1)設直線的方程為:

,,又

聯(lián)立方程組,消去得:,

              ……………………………………………7

,得:

,,整理得:,

.……10分

(2)解:

當且僅當,即時等號成立,所以最小值為.   ……14分

 

 

 


同步練習冊答案