如圖所示.將平面直角坐標系中的縱軸繞點O順時針旋轉300構成一個斜坐標系xOy.平面上任一點P關于斜坐標系的坐標(x,y)用如下方式定義:過P作兩坐標軸的平行線分別交坐標軸Ox于點M.Oy于點N.則M在Ox軸上表示的數為x.N在Oy軸上表示的數為y.在斜坐標系中.若A.B兩點的坐標分別為(1.2)..則線段AB的長為 . 查看更多

 

題目列表(包括答案和解析)

如圖所示,將平面直角坐標系中的縱軸繞點O順時針旋轉300(坐標軸的長度單位不變)構成一個斜坐標系xOy,平面上任一點P關于斜坐標系的坐標(x,y)用如下方式定義:過P作兩坐標軸的平行線分別交坐標軸Ox于點M,Oy于點N,則M在Ox軸上表示的數為x,N在Oy軸上表示的數為y.在斜坐標系中,若A,B兩點的坐標分別為(1,2),(-2,3),則線段AB的長為
7
7

查看答案和解析>>

如圖所示,將平面直角坐標系中的縱軸繞點O順時針旋轉30°(坐標軸的長度單位不變)構成一個斜坐標系xOy,平面上任一點P關于斜坐標系的坐標(x,y)用如下方式定義:過P作兩坐標軸的平行線分別交坐標軸Ox于點M,Oy于點N,則M在Ox軸上表示的數為x,N在Oy軸上表示的數為y.在斜坐標系中,若A,B兩點的坐標分別為(1,2),(-2,3),則線段AB的長為_____________.

查看答案和解析>>

如圖所示,將平面直角坐標系中的縱軸繞點O順時針旋轉30°(坐標軸的長度單位不變)構成一個斜坐標系xOy,平面上任一點P關于斜坐標系的坐標(x,y)用如下方式定義:過P作兩坐標軸的平行線分別交坐標軸Ox于點M,Oy于點N,則M在Ox軸上表示的數為x,N在Oy軸上表示的數為y.在斜坐標系中,若A,B兩點的坐標分別為(1,2),(-2,3),則線段AB的長為_____________.

查看答案和解析>>

精英家教網在平面直角坐標系中,已知矩形ABCD的長為2,寬為1,AB、AD邊分別在x軸、y軸的正半軸上,A點與坐標原點重合(如圖所示).將矩形折疊,使A點落在線段DC上.
(Ⅰ)若折痕所在直線的斜率為k,試寫出折痕所在直線的方程;
(Ⅱ)求折痕的長的最大值.

查看答案和解析>>

在平面直角坐標系中,矩形紙片ABCD的長為4,寬為2.AB,AD邊分別在x軸、y軸的正半軸上,點A與坐標原點重合.將矩形紙片沿直線折疊,使點A落在邊CD上,記為點A',如圖所示.
(1)設A'的坐標是(2a,2)(0≤a≤2),寫出折痕所在直線的方程;
(2)若折痕經過B時,求折痕所在直線的斜率,并寫出以折痕為直徑的圓方程.

查看答案和解析>>

一、填空題:本大題共14小題,每小題5分,共70分.

1.   2.   3.   4.   5.1   6.  7.  8. 9.16   10.8   11.  12.   13.  14. ①③

二、解答題:本大題共6小題,共90分.

15.(1)設集合中的點為事件,  區(qū)域的面積為36,  區(qū)域的面積為18

(2)設點在集合為事件,  甲、乙兩人各擲一次骰子所得的點數為36個,其中在集合中的點有21個,故

16.(1)由4sinB ? sin2+ cos2B = 1 +得:

,          

(2)法1:為銳角          

由已知得:, 角為銳角      可得:

由正弦定理得:

法2:由得:,  由余弦定理知:

即:          

17.(1)證明:連接,取中點,連接

在等腰梯形中,,AB=AD,,E是BC的中點

都是等邊三角形   

平面    平面

平面   

(2)證明:連接于點,連接

,且    四邊形是平行四邊形   是線段的中點

是線段的中點     

平面   平面

(3)與平面不垂直.

證明:假設平面,  則

平面  

,平面    平面   

,這與矛盾

與平面不垂直.

18.(1)設橢圓的標準方程為

依題意得:,得   ∴  所以,橢圓的標準方程為

(2)設過點的直線方程為:,代入橢圓方程得;

  (*)

依題意得:,即 

得:,且方程的根為  

當點位于軸上方時,過點垂直的直線與軸交于點

直線的方程是:,  

所求圓即為以線段DE為直徑的圓,故方程為:

同理可得:當點位于軸下方時,圓的方程為:

(3)設,=得:,代入

(**)    要證=,即證

由方程組(**)可知方程組(1)成立,(2)顯然成立.∴=

19..解(1)的解集有且只有一個元素,

當a=4時,函數上遞減

故存在,使得不等式成立

當a=0時,函數上遞增

故不存在,使得不等式成立

綜上,得a=4,…………………………5分

(2)由(1)可知

當n=1時,

時,

(3)

+

               =+>

               >    

20解:(1)由的定義可知,(對所有實數)等價于

(對所有實數)這又等價于,即

對所有實數均成立.        (*)

  由于的最大值為,

  故(*)等價于,即,這就是所求的充分必要條件

(2)分兩種情形討論

     (i)當時,由(1)知(對所有實數

則由易知

再由的單調性可知,

函數在區(qū)間上的單調增區(qū)間的長度

(參見示意圖1)

(ii)時,不妨設,則,于是

   當時,有,從而;

時,有

從而  ;

時,,及,由方程

      解得圖象交點的橫坐標為

                          ⑴

 

顯然,

這表明之間。由⑴易知

 

綜上可知,在區(qū)間上,   (參見示意圖2)

故由函數的單調性可知,在區(qū)間上的單調增區(qū)間的長度之和為,由于,即,得

          ⑵

故由⑴、⑵得 

綜合(i)(ii)可知,在區(qū)間上的單調增區(qū)間的長度和為

 

 

 

 

                                    

 


同步練習冊答案