當(dāng)且僅當(dāng)時取等號.l ( 08年海南寧夏文科第18題).如下的三個圖中.上面的是一個長方體截去一個角所得多面體的直觀圖.它的正視圖和俯視圖在下面畫出(Ⅰ)在正視圖下面.按照畫三視圖的要求畫出該多面體的俯視圖,(Ⅱ)按照給出的尺寸.求該多面體的體積, 查看更多

 

題目列表(包括答案和解析)

若對任意,()有唯一確定的與之對應(yīng),則稱為關(guān)于的二元函數(shù),F(xiàn)定義滿足下列性質(zhì)的二元函數(shù)為關(guān)于實(shí)數(shù)的廣義“距離”:

  (1)非負(fù)性:,當(dāng)且僅當(dāng)時取等號;

  (2)對稱性:;

  (3)三角形不等式:對任意的實(shí)數(shù)均成立.

今給出三個二元函數(shù),請選出所有能夠成為關(guān)于的廣義“距離”的序號:

;②;③._________________.

查看答案和解析>>

若對任意,()有唯一確定的與之對應(yīng),稱為關(guān)于的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)為關(guān)于實(shí)數(shù)、的廣義“距離”:

(1)非負(fù)性:,當(dāng)且僅當(dāng)時取等號;

(2)對稱性:

(3)三角形不等式:對任意的實(shí)數(shù)z均成立.

今給出四個二元函數(shù):

;②;④.

能夠成為關(guān)于的、的廣義“距離”的函數(shù)的所有序號是                 .

 

查看答案和解析>>

若對任意,()有唯一確定的與之對應(yīng),稱為關(guān)于、的二元函數(shù). 現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)為關(guān)于實(shí)數(shù)的廣義“距離”:

(1)非負(fù)性:,當(dāng)且僅當(dāng)時取等號;

(2)對稱性:;

(3)三角形不等式:對任意的實(shí)數(shù)z均成立.

今給出個二元函數(shù):①;②;③;④.則能夠成為關(guān)于的、的廣義“距離”的函數(shù)的所有序號是           .

 

查看答案和解析>>

若對任意,()有唯一確定的與之對應(yīng),稱為關(guān)于、的二元函數(shù). 現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)為關(guān)于實(shí)數(shù)、的廣義“距離”:

(1)非負(fù)性:,當(dāng)且僅當(dāng)時取等號;

(2)對稱性:;

(3)三角形不等式:對任意的實(shí)數(shù)z均成立.

今給出四個二元函數(shù):①;②;

.

能夠成為關(guān)于的的廣義“距離”的函數(shù)的所有序號是             .

 

查看答案和解析>>

若對任意,,(、)有唯一確定的與之對應(yīng),稱為關(guān)于、的二元函數(shù). 現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)為關(guān)于實(shí)數(shù)的廣義“距離”:

(1)非負(fù)性:,當(dāng)且僅當(dāng)時取等號;

(2)對稱性:;

(3)三角形不等式:對任意的實(shí)數(shù)z均成立.

今給出個二元函數(shù):①;②;③;④.則能夠成為關(guān)于的、的廣義“距離”的函數(shù)的所有序號是                         .

 

查看答案和解析>>


同步練習(xí)冊答案