也即當(dāng)n=k+1時(shí) 成立.所以對(duì)一切. 6分 五.計(jì)數(shù)原理內(nèi) 容要 求ABC 查看更多

 

題目列表(包括答案和解析)

數(shù)列,滿足

(1)求,并猜想通項(xiàng)公式。

(2)用數(shù)學(xué)歸納法證明(1)中的猜想。

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式求解,并用數(shù)學(xué)歸納法加以證明。第一問利用遞推關(guān)系式得到,,,并猜想通項(xiàng)公式

第二問中,用數(shù)學(xué)歸納法證明(1)中的猜想。

①對(duì)n=1,等式成立。

②假設(shè)n=k時(shí),成立,

那么當(dāng)n=k+1時(shí),

,所以當(dāng)n=k+1時(shí)結(jié)論成立可證。

數(shù)列,滿足

(1),,,并猜想通項(xiàng)公。  …4分

(2)用數(shù)學(xué)歸納法證明(1)中的猜想。①對(duì)n=1,等式成立。  …5分

②假設(shè)n=k時(shí),成立,

那么當(dāng)n=k+1時(shí),

,             ……9分

所以

所以當(dāng)n=k+1時(shí)結(jié)論成立                     ……11分

由①②知,猜想對(duì)一切自然數(shù)n均成立

 

查看答案和解析>>

已知是等差數(shù)列,其前n項(xiàng)和為Sn是等比數(shù)列,且,.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)記,,證明).

【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.

,得,,.

由條件,得方程組,解得

所以,.

(2)證明:(方法一)

由(1)得

     ①

   ②

由②-①得

,

(方法二:數(shù)學(xué)歸納法)

①  當(dāng)n=1時(shí),,,故等式成立.

②  假設(shè)當(dāng)n=k時(shí)等式成立,即,則當(dāng)n=k+1時(shí),有:

   

   

,因此n=k+1時(shí)等式也成立

由①和②,可知對(duì)任意,成立.

 

查看答案和解析>>

已知命題1+2+22+…+2n-1=2n-1及其證明:
(1)當(dāng)n=1時(shí),左邊=1,右邊=21-1=1,所以等式成立;
(2)假設(shè)n=k時(shí)等式成立,即1+2+22+…+2k-1=2k-1 成立,
則當(dāng)n=k+1時(shí),1+2+22+…+2k-1+2k==2k+1-1,所以n=k+1時(shí)等式也成立,
由(1)(2)知,對(duì)任意的正整數(shù)n等式都成立,
判斷以上評(píng)述

[     ]

A.命題、推理都正確
B.命題正確、推理不正確
C.命題不正確、推理正確
D.命題、推理都不正確

查看答案和解析>>

(2012•成都一模)在用數(shù)學(xué)歸納法證明f(n)=
1
n
+
1
n+1
+…+
1
2n
<1(n∈N*,n≥3)的過程中:假設(shè)當(dāng)n=k(k∈N*,k≥3)時(shí),不等式f(k)<1成立,則需證當(dāng)n=k+1時(shí),f(k+1)<1也成立.若f(k+1)=f(k)+g(k),則g(k)=(  )

查看答案和解析>>

對(duì)于不等式
n2+n
<n+1(n∈N*),某同學(xué)用數(shù)學(xué)歸納法的證明過程如下:
(1)當(dāng)n=1時(shí),
12+1
<1+1,不等式成立.
(2)假設(shè)當(dāng)n=k(k∈N*)時(shí),不等式成立,即
k2+k
<k+1,則當(dāng)n=k+1時(shí),
(k+1)2+(k+1)
=
k2+3k+2
(k2+3k+2)+(k+2)
=
(k+2)2
=(k+1)+1,∴當(dāng)n=k+1時(shí),不等式成立.
則上述證法( 。
A、過程全部正確
B、n=1驗(yàn)得不正確
C、歸納假設(shè)不正確
D、從n=k到n=k+1的推理不正確

查看答案和解析>>


同步練習(xí)冊(cè)答案