19.是否存在常數(shù).使.在上是減函數(shù).且在 查看更多

 

題目列表(包括答案和解析)

在實(shí)數(shù)集R上定義運(yùn)算:xyx(ay)(aR,a為常數(shù)).若f(x)=ex,g(x)=ex+2x2,F(xiàn)(x)=f(x)g(x).

(Ⅰ)求F(x)的解析式;

(Ⅱ)若F(x)在R上是減函數(shù),求實(shí)數(shù)a的取值范圍;

(Ⅲ)若a=-3,在F(x)的曲線上是否存在兩點(diǎn),使得過這兩點(diǎn)的切線互相垂直?若存在,求出切線方程;若不存在,說明理由.

查看答案和解析>>

在實(shí)數(shù)集R上定義運(yùn)算:xy=x(a-y)(a∈R,a為常數(shù)),若f(x)=ex,g(x)=e-x+2x2,F(xiàn)(x)=f(x)g(x),

(1)求F(x)的解析式;

(2)若F(x)在R上是減函數(shù),求實(shí)數(shù)a的取值范圍;

(3)若a=-3,則在F(x)的曲線上是否存在兩點(diǎn),使得過這兩點(diǎn)的切線互相垂直?若存在,求出切線方程;若不存在,說明理由.

查看答案和解析>>

已知函數(shù)f(x)=-x3+ax2+1(a∈R).
(1)若函數(shù)y=f(x)在區(qū)間(0,
2
3
)
上遞增,在區(qū)間[
2
3
,+∞)上遞減,求a的值;
(2)當(dāng)x∈[0,1]時(shí),設(shè)函數(shù)y=f(x)圖象上任意一點(diǎn)處的切線的傾斜角為θ,若給定常數(shù)a∈(
3
2
,+∞),求θ的取值范圍;
(3)在(1)的條件下,是否存在實(shí)數(shù)m,使得函數(shù)g(x)=x4-5x3+(2-m)x2+1(m∈R)的圖象與函數(shù)y=f(x)的圖象恰有三個(gè)交點(diǎn).若存在,請求出實(shí)數(shù)m的值;若不存在,試說明理由.

查看答案和解析>>

已知函數(shù)f(x)=ex+ax2,其中a為實(shí)常數(shù).
(1)若f(x)在區(qū)間(1,2)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=-2時(shí),求證:f(x)有3個(gè)零點(diǎn);
(3)設(shè)y=g(x)為f(x)在x0處的切線,若“?x≠x0,(f(x)-g(x))(x-x0)>0”,則稱x0為f(x)的一個(gè)優(yōu)美點(diǎn),是否存在實(shí)數(shù)a,使得x0=2是f(x)的一個(gè)優(yōu)美點(diǎn)?說明理由.(參考數(shù)據(jù):e≈2.718)

查看答案和解析>>

已知函數(shù)為常數(shù)),其圖象是曲線

1)當(dāng)時(shí),求函數(shù)的單調(diào)減區(qū)間;

2)設(shè)函數(shù)的導(dǎo)函數(shù)為,若存在唯一的實(shí)數(shù),使得同時(shí)成立,求實(shí)數(shù)的取值范圍;

3)已知點(diǎn)為曲線上的動(dòng)點(diǎn),在點(diǎn)處作曲線的切線與曲線交于另一點(diǎn),在點(diǎn)處作曲線的切線,設(shè)切線的斜率分別為.問:是否存在常數(shù),使得?若存在,求出的值;若不存在,請說明理由.

 

查看答案和解析>>


同步練習(xí)冊答案