(Ⅱ)求在一年內小王參加駕照考試次數(shù)的分布列和的數(shù)學期望. 查看更多

 

題目列表(包括答案和解析)

17、某地最近出臺一項機動車駕照考試規(guī)定:每位考試者一年之內最多有4次參加考試的機會,一量某次考試通過,便可領取駕照,不再參加以后的考試,否則就一直考到第4次為止如果李明決定參加駕照考試,設他每次參加考試通過的概率依次為0.6,0.7,0.8,0.9.求在一年內李明參加駕照考試次數(shù)ξ的分布列和ξ的期望,并求李明在一所內領到駕照的概率.

查看答案和解析>>

(08年安慶市二模理)(13分)安慶駕校最近出臺了一項機動車駕照考試的規(guī)定:要求每位考試者一年之內最多有4次參加考試的機會,一旦某次考試通過,便可以領取駕照,不再參加以后的考試,對于四次考試都未通過者,須進入下一年度的考核。如果李明決定參加駕照考試,假設他每次參加考試通過的概率依次為0.6,0.7,0.8,0.9。

(1)求在一年內李明參加駕照考試次數(shù)的分布列和的期望;

(2)求李明在一年內領到駕照的概率。

查看答案和解析>>

某地最近出臺一項機動車駕照考試規(guī)定:每位考試者一年之內最多有次參加考試的機會,一旦某次考試通過,便可領取駕照,不再參加以后的考試,否則就一直考到第次為止.如果李明決定參加駕照考試,設他每次參加考試通過的概率依次為.求在一年內李明參加駕照考試次數(shù)的分布列和的期望,并求李明在一年內領到駕照的概率.

查看答案和解析>>

(05年湖北卷理)(12分)

某地最近出臺一項機動車駕照考試規(guī)定;每位考試者一年之內最多有4次參加考試的機

會,一旦某次考試通過,使可領取駕照,不再參加以后的考試,否則就一直考到第4次為止。

如果李明決定參加駕照考試,設他每次參加考試通過的概率依次為0.6,0.7,0.8,0.9,求在

一年內李明參加駕照考試次數(shù)的分布列和的期望,并求李明在一年內領到駕照的概率.

查看答案和解析>>

某地最近出臺一項機動車駕照考試規(guī)定;每位考試者一年之內最多有4次參加考試的機會,一旦某次考試通過,便可領取駕照,不再參加以后的考試,否則就一直考到第4次為止。如果李明決定參加駕照考試,設他每次參加考試通過的概率依次為0.6,0.7,0.8,0.9,求在一年內李明參加駕照考試次數(shù)的分布列,并求李明在一年內領到駕照的概率.

 

查看答案和解析>>

一、            選擇題(每小題5分,共60分)

 

CADACD      CDBDBA   

二、填空題(每小題4分,共16分)

13.       14.         15.        16.

三、解答題

17.(本小題滿分12分)

解:(Ⅰ)∵,

,得

兩邊平方:=,∴= ………………6分

(Ⅱ)∵

,解得

又∵, ∴,

,

的夾角為,則,∴

的夾角為. …………… 12分

18. (本小題滿分12分)

解:(Ⅰ)小王在一年內領到駕照的概率為:

………………………( 4分)

(Ⅱ)的取值分別為1,2,3.

   

………………………( 8分)

所以小王參加考試次數(shù)的分布列為:

1

2

3

0.6

0.28

0.12

所以的數(shù)學期望為  ……………………12分

   

19.(本小題滿分12分)

(Ⅰ)證明:由已知得,所以,即,

,,∴, 平面

∴平面平面.……………………………4分(文6分)

(Ⅱ)解:設的中點為,連接,則,

是異面直線所成的角或其補角

由(Ⅰ)知,在中,,,

.

所以異面直線所成的角為.…………………8分(文12分)

(Ⅲ)(解法一)由已知得四邊形是正方形,

,∴,

過點,連接,則,

即二面角的平面角,

中,,所以,

,由余弦定理得,

所以二面角的大小為.……………12分

(解法二)向量法

的中點,則,以為坐標原點,所在直線分別為軸建立空間直角坐標系,

設平面的法向量

所以

同理得平面的法向量

,

所以所求二面角的大小為.………………12分

20.(本小題滿分12分)

解:(Ⅰ)

           當時,,∴.

           當

                       

……………6分

(Ⅱ)當時,由(Ⅰ)的討論可知

………………12分

   

21.(本小題滿分12分)

解:(Ⅰ)∵

          ∴

,則,∴

,∴

.……………6分

     (Ⅱ)證明:

         

                       

          ∴

          又∵,∴

          ∴

          ∴.………………12分

    

22.(本小題滿分14分)

解:(Ⅰ)①當直線軸時,

,此時,∴.

(不討論扣1分)

②當直線不垂直于軸時,,設雙曲線的右準線為,

,作,作且交軸于

根據(jù)雙曲線第二定義有:,

到準線的距離為.

,得:,

,∴,∵此時,∴

綜上可知.………………………………………7分

(Ⅱ)設,代入雙曲線方程得

,則,且代入上面兩式得:

 ①

     ②

由①②消去

  ③

有:,綜合③式得

,解得

的取值范圍為…………………………14分

 

 

 

 

 

 


同步練習冊答案