查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°. AC = BC = a,

    D、E分別為棱AB、BC的中點(diǎn), M為棱AA1­上的點(diǎn),二面角MDEA為30°.

   (1)求MA的長;w.w.w.k.s.5.u.c.o.m      

   (2)求點(diǎn)C到平面MDE的距離。

查看答案和解析>>

(本小題滿分12分)某校高2010級(jí)數(shù)學(xué)培優(yōu)學(xué)習(xí)小組有男生3人女生2人,這5人站成一排留影。

(1)求其中的甲乙兩人必須相鄰的站法有多少種? w.w.w.k.s.5.u.c.o.m      

(2)求其中的甲乙兩人不相鄰的站法有多少種?

(3)求甲不站最左端且乙不站最右端的站法有多少種 ?

查看答案和解析>>

(本小題滿分12分)

某廠有一面舊墻長14米,現(xiàn)在準(zhǔn)備利用這面舊墻建造平面圖形為矩形,面積為126平方米的廠房,工程條件是①建1米新墻費(fèi)用為a元;②修1米舊墻的費(fèi)用為元;③拆去1米舊墻,用所得材料建1米新墻的費(fèi)用為元,經(jīng)過討論有兩種方案: (1)利用舊墻的一段x米(x<14)為矩形廠房一面的邊長;(2)矩形廠房利用舊墻的一面邊長x≥14.問如何利用舊墻,即x為多少米時(shí),建墻費(fèi)用最省?(1)、(2)兩種方案哪個(gè)更好?

 

查看答案和解析>>

(本小題滿分12分)

已知a,b是正常數(shù), ab, x,y(0,+∞).

   (1)求證:,并指出等號(hào)成立的條件;w.w.w.k.s.5.u.c.o.m           

   (2)利用(1)的結(jié)論求函數(shù)的最小值,并指出取最小值時(shí)相應(yīng)的x 的值.

查看答案和解析>>

(本小題滿分12分)

已知a=(1,2), b=(-2,1),xab,y=-kab (kR).

   (1)若t=1,且xy,求k的值;

   (2)若tR ,x?y=5,求證k≥1.

查看答案和解析>>

一、            選擇題(每小題5分,共60分)

 

CADACD      CDBDBA   

二、填空題(每小題4分,共16分)

13.       14.         15.        16.

三、解答題

17.(本小題滿分12分)

解:(Ⅰ)∵,

,得

兩邊平方:=,∴= ………………6分

(Ⅱ)∵,

,解得

又∵, ∴

,,

設(shè)的夾角為,則,∴

的夾角為. …………… 12分

18. (本小題滿分12分)

解:(Ⅰ)小王在一年內(nèi)領(lǐng)到駕照的概率為:

………………………( 4分)

(Ⅱ)的取值分別為1,2,3.

   

………………………( 8分)

所以小王參加考試次數(shù)的分布列為:

1

2

3

0.6

0.28

0.12

所以的數(shù)學(xué)期望為  ……………………12分

   

19.(本小題滿分12分)

(Ⅰ)證明:由已知得,所以,即,

,,∴, 平面

∴平面平面.……………………………4分(文6分)

(Ⅱ)解:設(shè)的中點(diǎn)為,連接,則,

是異面直線所成的角或其補(bǔ)角

由(Ⅰ)知,在中,,,

.

所以異面直線所成的角為.…………………8分(文12分)

(Ⅲ)(解法一)由已知得四邊形是正方形,

,∴

過點(diǎn),連接,則,

即二面角的平面角,

中,,所以,

,由余弦定理得,

所以二面角的大小為.……………12分

(解法二)向量法

設(shè)的中點(diǎn),則,以為坐標(biāo)原點(diǎn),所在直線分別為軸建立空間直角坐標(biāo)系,

,

設(shè)平面的法向量

所以

同理得平面的法向量

,

所以所求二面角的大小為.………………12分

20.(本小題滿分12分)

解:(Ⅰ)

           當(dāng)時(shí),,∴.

           當(dāng)

                       

……………6分

(Ⅱ)當(dāng)時(shí),由(Ⅰ)的討論可知

………………12分

   

21.(本小題滿分12分)

解:(Ⅰ)∵

          ∴

,則,∴

,∴

.……………6分

     (Ⅱ)證明:

         

                       

          ∴

          又∵,∴

          ∴

          ∴.………………12分

    

22.(本小題滿分14分)

解:(Ⅰ)①當(dāng)直線軸時(shí),

,此時(shí),∴.

(不討論扣1分)

②當(dāng)直線不垂直于軸時(shí),,設(shè)雙曲線的右準(zhǔn)線為,

,作,作且交軸于

根據(jù)雙曲線第二定義有:,

到準(zhǔn)線的距離為.

,得:,

,∴,∵此時(shí),∴

綜上可知.………………………………………7分

(Ⅱ)設(shè),代入雙曲線方程得

,則,且代入上面兩式得:

 ①

     ②

由①②消去

  ③

有:,綜合③式得

,解得

的取值范圍為…………………………14分

 

 

 

 

 

 


同步練習(xí)冊(cè)答案