查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an;

   (Ⅱ)設數(shù)列{an}的前n項和為Sn,證明:;

   (Ⅲ)設,證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

一、            選擇題(每小題5分,共60分)

 

CADACD      CDBDBA   

二、填空題(每小題4分,共16分)

13.       14.         15.        16.

三、解答題

17.(本小題滿分12分)

解:(Ⅰ)∵,

,得

兩邊平方:=,∴= ………………6分

(Ⅱ)∵

,解得,

又∵, ∴,

的夾角為,則,∴

的夾角為. …………… 12分

18. (本小題滿分12分)

解:(Ⅰ)小王在一年內(nèi)領到駕照的概率為:

………………………( 4分)

(Ⅱ)的取值分別為1,2,3.

    ,

………………………( 8分)

所以小王參加考試次數(shù)的分布列為:

1

2

3

0.6

0.28

0.12

所以的數(shù)學期望為  ……………………12分

   

19.(本小題滿分12分)

(Ⅰ)證明:由已知得,所以,即,

,∴平面

∴平面平面.……………………………4分(文6分)

(Ⅱ)解:設的中點為,連接,則

是異面直線所成的角或其補角

由(Ⅰ)知,在中,,,

.

所以異面直線所成的角為.…………………8分(文12分)

(Ⅲ)(解法一)由已知得四邊形是正方形,

,∴

過點,連接,則,

即二面角的平面角,

中,,所以,

,由余弦定理得

所以二面角的大小為.……………12分

(解法二)向量法

的中點,則,以為坐標原點,所在直線分別為軸建立空間直角坐標系,

,

設平面的法向量

所以

同理得平面的法向量

所以所求二面角的大小為.………………12分

20.(本小題滿分12分)

解:(Ⅰ)

           當時,,∴.

           當

                       

……………6分

(Ⅱ)當時,由(Ⅰ)的討論可知

………………12分

   

21.(本小題滿分12分)

解:(Ⅰ)∵

          ∴

,則,∴

,∴

.……………6分

     (Ⅱ)證明:

         

                       

          ∴

          又∵,∴

          ∴

          ∴.………………12分

    

22.(本小題滿分14分)

解:(Ⅰ)①當直線軸時,

,此時,∴.

(不討論扣1分)

②當直線不垂直于軸時,,設雙曲線的右準線為,

,作,作且交軸于

根據(jù)雙曲線第二定義有:,

到準線的距離為.

,得:,

,∴,∵此時,∴

綜上可知.………………………………………7分

(Ⅱ)設,代入雙曲線方程得

,則,且代入上面兩式得:

 ①

     ②

由①②消去

  ③

有:,綜合③式得

,解得

的取值范圍為…………………………14分

 

 

 

 

 

 


同步練習冊答案