題目列表(包括答案和解析)
(本小題滿分12分)
為振興旅游業(yè),四川省2009年面向國內(nèi)發(fā)行總量為2000萬張的熊貓優(yōu)惠卡,向省外人士發(fā)行的是熊貓金卡(簡稱金卡),向省內(nèi)人士發(fā)行的是熊貓銀卡(簡稱銀卡)。某旅游公司組織了一個有36名游客的旅游團到四川名勝旅游,其中是省外游客,其余是省內(nèi)游客。在省外游客中有持金卡,在省內(nèi)游客中有持銀卡。
(I)在該團中隨機采訪3名游客,求恰有1人持金卡且持銀卡者少于2人的概率;
(II)在該團的省內(nèi)游客中隨機采訪3名游客,設(shè)其中持銀卡人數(shù)為隨機變量,求的分布列及數(shù)學(xué)期望。
(本小題滿分13分)某企業(yè)準(zhǔn)備招聘一批大學(xué)生到本單位就業(yè),但在簽約前要對他們的某項專業(yè)技能進(jìn)行測試。在待測試的某一個小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),如果從中隨機選2人參加測試,其中恰為一男一女的概率為 (I)求該小組中女生的人數(shù); (II)假設(shè)此項專業(yè)技能測試對該小組的學(xué)生而言,每個女生通過的概率均為,每個男生通過的概率均為,現(xiàn)對該小組中男生甲、男生乙和女生丙3個人進(jìn)行測試,記這3人中通過測試的人數(shù)為隨機變量,求的分布列和數(shù)學(xué)期望。
(本小題滿分13分)
某商場為吸引顧客消費推出一項優(yōu)惠活動.活動規(guī)則如下:消費額每滿100元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費218元,可轉(zhuǎn)動轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.
(I)若某位顧客消費128元,求返券金額不低于30元的概率;
(II)若某位顧客恰好消費280元,并按規(guī)則參與了活動,他獲得返券的金額記為X(元).
求隨機變量X的分布列和數(shù)學(xué)期望.
(本小題滿分12分)
在一次籃球練習(xí)課中,規(guī)定每人最多投籃5次,若投中2次就稱為“通過”,若投中3次就稱為“優(yōu)秀”并停止投籃.已知甲每次投籃投中的概率是.
(I)求甲恰好投籃3次就通過的概率;
(II)設(shè)甲投籃投中的次數(shù)為,求隨機變量的分布列及數(shù)學(xué)期望E.
(本小題12分)
2009年10月,某家具城舉行促銷活動,促銷方案是:顧客每消費1000元,便可以獲得獎券一張(不足1000元不能獲得獎券),每張獎券中獎的概率為,若中獎,則家具城返還顧客現(xiàn)金200元。某顧客購買一張價格為3400元的餐桌,得到3張獎券,記隨機變量表示家具城返還給顧客現(xiàn)金數(shù)。
(I)求家具城恰好返還給顧客現(xiàn)金200元的概率;
(II)求家具城返還給顧客現(xiàn)金的分布列與數(shù)學(xué)期望;
一、選擇題(每小題5分,共計60分)
ABADD CACAC AB
二、填空題(每小題4分,共計16分)
(13)4;(14);(15);(16)①④.
三、解答題:
17.解:(本小題滿分12分)
(Ⅰ) 由題意
由題意,函數(shù)周期為3,又>0,;
(Ⅱ) 由(Ⅰ)知
又x,的減區(qū)間是.
(18) (本小題滿分12分)
解:(1)隨機變量的所有可能取值為
所以隨機變量的分布列為
0
1
2
3
4
5
(2)∵隨機變量
∴
19. (本小題滿分12分)
解:(Ⅰ)∵ 底面ABCD是正方形,
∴AB⊥BC,
又平面PBC⊥底面ABCD
平面PBC ∩ 平面ABCD=BC
∴AB ⊥平面PBC
又PC平面PBC
∴AB ⊥CP ………………3分
(Ⅱ)解法一:體積法.由題意,面面,
取中點,則
面.
再取中點,則 ………………5分
設(shè)點到平面的距離為,則由
. ………………7分
解法二:面
取中點,再取中點
,
過點作,則
在中,
由
∴點到平面的距離為。 ………………7分
解法三:向量法(略)
(Ⅲ)
面
就是二面角的平面角.
∴二面角的大小為45°. ………………12分
方法二:向量法(略).
(20)(本小題滿分12分)
解:(Ⅰ)方法一:∵,
∴.
設(shè)直線,
并設(shè)l與g(x)=x2相切于點M()
∵ ∴2
∴
代入直線l方程解得p=1或p=3.
方法二:
將直線方程l代入 得
∴
解得p=1或p=3 .
(Ⅱ)∵,
①要使為單調(diào)增函數(shù),須在恒成立,
即在恒成立,即在恒成立,
又,所以當(dāng)時,在為單調(diào)增函數(shù); …………6分
②要使為單調(diào)減函數(shù),須在恒成立,
即在恒成立,即在恒成立,
又,所以當(dāng)時,在為單調(diào)減函數(shù).
綜上,若在為單調(diào)函數(shù),則的取值范圍為或.………8分
(21) (本小題滿分12分)
(1)∵直線的方向向量為
∴直線的斜率為,又∵直線過點
∴直線的方程為
∵,∴橢圓的焦點為直線與軸的交點
∴橢圓的焦點為
∴,又∵
∴ ,∴
∴橢圓方程為
(2)設(shè)直線MN的方程為
由,得
設(shè)坐標(biāo)分別為
則 (1) (2)
>0
∴,
∵,顯然,且
∴
∴
代入(1) (2),得
∵,得
,即
解得且.
(22) (本小題滿分14分)
(1) 解:過的直線方程為
聯(lián)立方程消去得
∴
即
(2)
∴是等比數(shù)列
,;
(III)由(II)知,,要使恒成立由=>0恒成立,
即(-1)nλ>-()n-1恒成立.
?。當(dāng)n為奇數(shù)時,即λ<()n-1恒成立.
又()n-1的最小值為1.∴λ<1. 10分
?。當(dāng)n為偶數(shù)時,即λ>-()n-1恒成立,
又-()n-1的最大值為-,∴λ>-. 11分
即-<λ<1,又λ≠0,λ為整數(shù),
∴λ=-1,使得對任意n∈N*,都有.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com