(Ⅱ)若從數(shù)列中依次取出第2項.第4項.第8項.--..--.按原來順序組成一個新數(shù)列.記該數(shù)列的前項和為.求的表達式. 查看更多

 

題目列表(包括答案和解析)

已知等差數(shù)列的前項和為,公差成等比數(shù)列.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)若從數(shù)列中依次取出第2項、第4項、第8項,……,,……,按原來順序組成一個新數(shù)列,記該數(shù)列的前項和為,求的表達式.

查看答案和解析>>


已知等差數(shù)列的前項和為,公差成等比數(shù)列.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若從數(shù)列中依次取出第2項、第4項、第8項,……,,……,按原來順序組成一個新數(shù)列,記該數(shù)列的前項和為,求的表達式.

查看答案和解析>>

已知等差數(shù)列{an}中,a2=8,前10項的和S10=185,

(Ⅰ)求數(shù)列{}的通項公式;

(Ⅱ)若從數(shù)列{}中依次取出第2、4、8…2n,…項,按原來的順序排列成一個新的數(shù)列,試求新數(shù)列的前n項的和為An

 

查看答案和解析>>

已知等差數(shù)列的前n項和為,公差成等比數(shù)列
(1)求數(shù)列的通項公式;
(2)若從數(shù)列中依次取出第2項、第4項、第8項,,按原來順序組成一個新數(shù)列,且這個數(shù)列的前的表達式.

查看答案和解析>>

已知等差數(shù)列的前n項和為,公差成等比數(shù)列
(1)求數(shù)列的通項公式;
(2)若從數(shù)列中依次取出第2項、第4項、第8項,,按原來順序組成一個新數(shù)列,且這個數(shù)列的前的表達式.

查看答案和解析>>

    2009.3

一、選擇題

(1)B  (2)A  (3)B (4)C (5)B (6)D

(7)D   (8)C  (9)C (10)B (11)A (12)C

二、填空題

    1,3,5

    三、解答題

    (17)解:(Ⅰ)-             ---------------------------2分

    高三年級人數(shù)為-------------------------3分

    現(xiàn)用分層抽樣的方法在全校抽取48名學生,應在高三年級抽取的人數(shù)為

    (人).                       --------------------------------------6分

    (Ⅱ)設(shè)“高三年級女生比男生多”為事件,高三年級女生、男生數(shù)記為.

    由(Ⅰ)知

    則基本事件空間包含的基本事件有

    共11個,     ------------------------------9分

    事件包含的基本事件有

    共5個   

                    --------------------------------------------------------------11分

    答:高三年級女生比男生多的概率為.  …………………………………………12分

    (18)解:(Ⅰ)  …………2分

    中,由于

                                            …………3分

    ,

                           

    ,所以,而,因此.…………6分

       (Ⅱ)由,

    由正弦定理得                                …………8分

    ,由(Ⅰ)知,所以    …………10分

    由余弦弦定理得 ,     …………11分

    ,

                                                   …………12分

    (19)(Ⅰ)證明:∵分別為、的中點,∴.

         又∵平面平面

    平面                                         …………4分

    (Ⅱ)∵,∴平面.

    又∵,∴平面.

    平面,∴平面平面.               …………8分

    (Ⅲ)∵平面,∴是三棱錐的高.

    在Rt△中,.

        在Rt△中,.

     ∵的中點,

    ,

    .        ………………12分

    (20)解:(Ⅰ)依題意得

                                 …………2分

     解得,                                             …………4分

    .       …………6分

       (Ⅱ)由已知得,                  …………8分

                                                             ………………12分

    (21)解:(Ⅰ)

          令=0,得                        ………2分

    因為,所以可得下表:

    0

    +

    0

    -

    極大

                                                              ………………4分

    因此必為最大值,∴,因此,

         ,

        即,∴

     ∴                                       ……………6分

    (Ⅱ)∵,∴等價于, ………8分

     令,則問題就是上恒成立時,求實數(shù)的取值范圍,為此只需,即,                 …………10分

    解得,所以所求實數(shù)的取值范圍是[0,1].            ………………12分

    (22)解:(Ⅰ)由得,,

    所以直線過定點(3,0),即.                       …………………2分

     設(shè)橢圓的方程為,

    ,解得

    所以橢圓的方程為.                    ……………………5分

    (Ⅱ)因為點在橢圓上運動,所以,      ………………6分

    從而圓心到直線的距離

    所以直線與圓恒相交.                             ……………………9分

    又直線被圓截得的弦長

    ,       …………12分

    由于,所以,則,

    即直線被圓截得的弦長的取值范圍是.  …………………14分

     


    同步練習冊答案