在數(shù)列{an}中.已知a1=,a2=,且數(shù)列{an+1-an}是公比為的等比數(shù)列.數(shù)列{lg(an+1-an}是公差為-1的等差數(shù)列.(1)求數(shù)列{an}的通項公式, 查看更多

 

題目列表(包括答案和解析)

在數(shù)列{an}中,已知a1=,a2=,且數(shù)列{an+1- an}是公比為的等比數(shù)列,數(shù)列{lg(an+1-an)}是公差為-1的等差數(shù)列.

(1)求數(shù)列{an}的通項公式;

(2)Sn=a1+a2+…+an(n≥1),求Sn.

查看答案和解析>>

在數(shù)列{an}中,已知a1=1,a2=2,且數(shù)列{an}的奇數(shù)項依次組成公差為1的等差數(shù)列,偶數(shù)項依次組成公比為2的等比數(shù)列,數(shù)列{bn}滿足bn=
a2n-1
a2n
,記數(shù)列{bn}的前n項和為Sn
(1)寫出數(shù)列{an}的通項公式;
(2)求Sn
(3)證明:當(dāng)n≥6時,2-Sn
1
n

查看答案和解析>>

在數(shù)列{an}中,已知a1=1,an=an-1+an-2+…+a2+a1(n∈N*,n≥2).
(1)求數(shù)列{an}的通項公式;
(2)若bn=log2an,
1
b3b4
+
1
b4b5
+…+
1
bnbn+1
<m
對于任意的n∈N*,且n≥3恒成立,求m的取值范圍.

查看答案和解析>>

在數(shù)列{an}中,已知a1=
4
3
,a2=
13
9
,當(dāng)n≥2且n∈N*時,有an+1=
4
3
an-
1
3
an-1

(1)若bn=an+1-an(n∈N*),求證:數(shù)列{bn}是等比數(shù)列;
(2)求證:對任意n∈N*,都有
4
3
an
3
2

查看答案和解析>>

在數(shù)列{an}中,已知a1=1,a2=2,且an+2等于an•an+1的個位數(shù)(n∈N*),若數(shù)列{an}的前k項和為2011,則正整數(shù)k之值為( 。

查看答案和解析>>

難點磁場

6ec8aac122bd4f6e

殲滅難點訓(xùn)練

一、1.解析:6ec8aac122bd4f6e,

6ec8aac122bd4f6e

答案:A

2.解析:6ec8aac122bd4f6e

答案:C

二、3.解析:6ec8aac122bd4f6e

6ec8aac122bd4f6e

答案:6ec8aac122bd4f6e

4.解析:原式=6ec8aac122bd4f6e

6ec8aac122bd4f6e

a?b=86ec8aac122bd4f6e

答案:86ec8aac122bd4f6e

三、5.解:(1)由{an+16ec8aac122bd4f6ean}是公比為6ec8aac122bd4f6e的等比數(shù)列,且a1=6ec8aac122bd4f6e,a2=6ec8aac122bd4f6e,

an+16ec8aac122bd4f6ean=(a26ec8aac122bd4f6ea1)(6ec8aac122bd4f6e)n-1=(6ec8aac122bd4f6e6ec8aac122bd4f6e×6ec8aac122bd4f6e)(6ec8aac122bd4f6e)n-1=6ec8aac122bd4f6e,

an+1=6ec8aac122bd4f6ean+6ec8aac122bd4f6e                                               ①

又由數(shù)列{lg(an+16ec8aac122bd4f6ean)}是公差為-1的等差數(shù)列,且首項lg(a26ec8aac122bd4f6ea1)

=lg(6ec8aac122bd4f6e6ec8aac122bd4f6e×6ec8aac122bd4f6e)=-2,

∴其通項lg(an+16ec8aac122bd4f6ean)=-2+(n-1)(-1)=-(n+1),

an+16ec8aac122bd4f6ean=10(n+1),即an+1=6ec8aac122bd4f6ean+10(n+1)                                                                                                

①②聯(lián)立解得an=6ec8aac122bd4f6e[(6ec8aac122bd4f6e)n+1-(6ec8aac122bd4f6e)n+1

(2)Sn=6ec8aac122bd4f6e

6ec8aac122bd4f6e

6.解:由于6ec8aac122bd4f6e=1,可知,f(2a)=0                                                                      ①

同理f(4a)=0                                                                                                            ②

由①②可知f(x)必含有(x-2a)與(x-4a)的因式,由于f(x)是x的三次多項式,故可設(shè)f(x)=A(x-2a)(x-4a)(xC),這里A、C均為待定的常數(shù),

6ec8aac122bd4f6e

6ec8aac122bd4f6e,即4a2A-2aCA=-1                                                         ③

同理,由于6ec8aac122bd4f6e=1,得A(4a-2a)(4aC)=1,即8a2A-2aCA=1                        ④

由③④得C=3a,A=6ec8aac122bd4f6e,因而f(x)= 6ec8aac122bd4f6e (x-2a)(x-4a)(x-3a),

6ec8aac122bd4f6e

6ec8aac122bd4f6e

由數(shù)列{an}、{bn}都是由正數(shù)組成的等比數(shù)列,知p>0,q>0

6ec8aac122bd4f6e

當(dāng)p<1時,q<1, 6ec8aac122bd4f6e

6ec8aac122bd4f6e

8.解:(1)an=(n-1)d,bn=26ec8aac122bd4f6e=2(n1)d?

Sn=b1+b2+b3+…+bn=20+2d+22d+…+2(n1)d?

d≠0,2d≠1,∴Sn=6ec8aac122bd4f6e

Tn=6ec8aac122bd4f6e

(2)當(dāng)d>0時,2d>1

6ec8aac122bd4f6e

 

 

 


同步練習(xí)冊答案