(Ⅱ)若復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)P在y=上.求的值. 查看更多

 

題目列表(包括答案和解析)

給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面上所對(duì)應(yīng)點(diǎn)的軌跡是橢圓.
②設(shè)f(x)是定義在R上的函數(shù),且對(duì)任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
③已知曲線C:
x2
9
-
y2
16
=1
和兩定點(diǎn)E(-5,0)、F(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||<6.
④設(shè)定義在R上的兩個(gè)函數(shù)f(x)、g(x)都有最小值,且對(duì)任意的x∈R,命題“f(x)>0或g(x)>0”正確,則f(x)的最小值為正數(shù)或g(x)的最小值為正數(shù).
上述命題中錯(cuò)誤的個(gè)數(shù)是( 。

查看答案和解析>>

(2013•閔行區(qū)二模)給出下列四個(gè)命題:
①如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面的對(duì)應(yīng)點(diǎn)的軌跡是橢圓.
②若對(duì)任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,則數(shù)列{an}是等差數(shù)列或等比數(shù)列.
③設(shè)f(x)是定義在R上的函數(shù),且對(duì)任意的x∈R,|f(x)|=|f(-x)|恒成立,則f(x)是R上的奇函數(shù)或偶函數(shù).
④已知曲線C:
x2
9
-
y2
16
=1
和兩定點(diǎn)E(-5,0)、F(5,0),若P(x,y)是C上的動(dòng)點(diǎn),則||PE|-|PF||<6.
上述命題中錯(cuò)誤的個(gè)數(shù)是( 。

查看答案和解析>>

給出下列三個(gè)命題:
①若z1,z2∈C且z1-z2>0,則z1>z2
②如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面上所對(duì)應(yīng)點(diǎn)的軌跡為橢圓.
③已知曲線C:
x2
-
y2
=1
和兩定點(diǎn)F1(-
2
,0)
,F(xiàn)2(
2
,0)
,若P(x,y)是C上的動(dòng)點(diǎn),則||PF1|-|PF2||是定值.
上述命題中正確的個(gè)數(shù)是( 。

查看答案和解析>>

給出下列三個(gè)命題:
①若z1,z2∈C且z1-z2>0,則z1>z2
②如果復(fù)數(shù)z滿足|z+i|+|z-i|=2,則復(fù)數(shù)z在復(fù)平面上所對(duì)應(yīng)點(diǎn)的軌跡為橢圓.
③已知曲線C:
x2
-
y2
=1
和兩定點(diǎn)F1(-
2
,0)
,F(xiàn)2(
2
,0)
,若P(x,y)是C上的動(dòng)點(diǎn),則||PF1|-|PF2||是定值.
上述命題中正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

已知復(fù)數(shù)z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且
(1)若復(fù)數(shù)z1對(duì)應(yīng)的點(diǎn)M(m,n)在曲線上運(yùn)動(dòng),求復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)P(x,y)的軌跡方程;
(2)將(1)中的軌跡上每一點(diǎn)按向量方向平移個(gè)單位,得到新的軌跡C,求C的軌跡方程;
(3)過(guò)軌跡C上任意一點(diǎn)A(異于頂點(diǎn))作其切線,交y軸于點(diǎn)B,求證:以線段AB為直徑的圓恒過(guò)一定點(diǎn),并求出此定點(diǎn)的坐標(biāo).

查看答案和解析>>

一、選擇題(每小題5分,共40分)

題 號(hào)

1

2

3

4

5

6

7

8

答 案

B

A

D

C

C

A

B

C

二、填空題(每小題5分,其中第一空3分,第二空2分,共30分)

   9.2π; π   10.12π;x=13π    11.

   12.(±2,0);-    13.9;  41      14.12;  (-6,4)

三、15.(本小題滿分12分)

解:(1)……………………3分

                  ………………5分

   (2)點(diǎn)P的坐標(biāo)為………………6分

        由點(diǎn)P在直線上,即.………………9分

       

        ……………………12分

∵PA⊥底面ABCD,∴PA⊥CD.

∴CD⊥平面PAD……………………………………3分

∵AM平面PAD,∴CD⊥AM.

∵PC⊥平面AMN,∴PC⊥AM.

∴AM⊥平面PCD.

∴AM⊥PD.…………………………………………5分

   (II)解:∵AM⊥平面PCD(已證).

∴AM⊥PM,AM⊥NM.

∴∠PMN為二面角P-AM-N的平面角.…………………………7分

∵PN⊥平面AMN,∴PN⊥NM.

在直角△PCD中,CD=2,PD=2,∴PC=2.

∵PA=AD,AM⊥PD,∴M為PD的中點(diǎn),PM=PD=

由Rt△PMN∽R(shí)t△PCD,得 ∴.

…………10分

即二面角P―AM―N的大小為.(III)解:延長(zhǎng)NM,CD交于點(diǎn)E.

∵PC⊥平面AMN,∴NE為CE在平面AMN內(nèi)的射影

∴∠CEN為CD(即(CE)與平在AMN所成的角.…………12分

在Rt△PMN中,

∴CD與平面AMN所成的角的大小為…………15分

17. (I)解:因?yàn)閧an}是等比數(shù)列a1=1,a2=a.

a≠0,an=an1.……………………………………2分

…………5分

是以a為首項(xiàng), a2為公比的等比數(shù)列.

……………………9分

(II)甲、乙兩個(gè)同學(xué)的說(shuō)法都不正確,理由如下:……………………10分

解法一:設(shè){bn}的公比為q,則

a1=1,a2=a, a1, a3, a5,…,a2n1,…是以1為首項(xiàng),q為公比的等比數(shù)列,

a2, a4, a6, …, a2n , …是以a為首項(xiàng),q為公比的等比數(shù)列,…………………………11分

即{an}為:1,a, q, aq , q2, aq2, ……………………………………………………………12分

當(dāng)q=a2時(shí),{an}是等比數(shù)列;

當(dāng)q≠a2時(shí),{an}不是等比數(shù)列.…………………………………………………………14分

解法二:{an}可能是等比數(shù)列,也可能不是等比數(shù)列,舉例說(shuō)明如下:

設(shè){bn}的公比為q

(1)取a=q=1時(shí),an=1(n∈N),此時(shí)bn=anan+1=1, {an}、{bn}都是等比數(shù)列.…………11分

(2)取a=2, q=1時(shí),

所以{bn}是等比數(shù)列,而{an}不是等比數(shù)列.……………………………………14分

18.(本小題滿分13分)

   (I)解:設(shè)點(diǎn)P、Q、M的坐標(biāo)分別是P(x1, 0)、Q(0,y1)、M(x, y) 其中x1≤0,y1≤0,依條件可得……………………………………………………………2分

又依

代入(*)式,得……7分

即點(diǎn)M的軌跡方程為

(II)解:設(shè)M點(diǎn)的坐標(biāo)是(4cosα,2sinα)其中0≤α<2π

  • <code id="ya2uo"></code>
      <bdo id="ya2uo"><tr id="ya2uo"></tr></bdo>
        • <em id="ya2uo"><td id="ya2uo"></td></em>

          S四邊形OAMB=SOAM+SOBM

        • 僅當(dāng)時(shí),

          四邊形OAMB的面積有最大值. …………13分

          19.(本小題滿分13分)

          解:以A為原點(diǎn),BA所在直線為y軸建立如圖所示的平面直角坐標(biāo)系.

          設(shè)在t時(shí)刻甲、乙兩船分別在P(x1, y1) Q (x2,y2).

          (I)令,P、Q兩點(diǎn)的坐標(biāo)分別為(45,45),(30,20)

          .

          即兩船出發(fā)后3小時(shí)時(shí),相距鋰.……………………8分

          (II)由(I)的解法過(guò)程易知:

          ∴當(dāng)且僅當(dāng)t=4時(shí),|PQ|的最小值為20 .………………13分

          即兩船出發(fā)4小時(shí)時(shí),相距20 海里為兩船最近距離.

          20.(本小題滿分13分)

             (I)解:取x=1 , y=4則

              

          ………………6分

            (II)設(shè)函數(shù)滿足其值域?yàn)椋?,2)

          ……………………………………………………9分

          又任意取x>0, y>0且x≠y則

          ………………………13分(囿于篇幅,若有其它正確解法請(qǐng)按相應(yīng)步驟給分.)

           


          同步練習(xí)冊(cè)答案