題目列表(包括答案和解析)
(本小題滿分10分)
在中, 且
(1)求角A、B、C大小;
(2)若邊上的高且, 求三邊a、b、c.
(本小題滿分10分) 求曲線與直線圍成圖形的面積.
(本小題滿分10分)已知集合A={x|x2-5x+6<0},B={x|x2-4ax+3a2<0},且AB,求實數(shù)a的取值范圍.
(本小題滿分10分)四個不同的小球放入編號為1、2、3、4四個盒子中,依下列條件各有多少種放法。
(1)每個盒子各放一個;
(2)四個盒子恰有一個空著.
(本小題滿分10分)
已知奇函數(shù)f(x)=
(1)求實數(shù)m的值,并在給出的直角坐標(biāo)系中畫出函數(shù)
y=f(x)的圖象;
(2)若函數(shù)f(x)在區(qū)間[-1,|a|-2]上單調(diào)遞增,試
確定a的取值范圍.
說明:
一、本解答給出一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題
的主要考查內(nèi)容比照評分標(biāo)準(zhǔn)制訂相應(yīng)的評分細(xì)則.
二、對計算題當(dāng)考生的解答在某一步出現(xiàn)錯誤時,如果后續(xù)部分的解答未改變該題的
內(nèi)容和難度,可視影響的程度決定給分,但不得超過該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如
果后續(xù)部分的解答有較嚴(yán)重的錯誤,就不再給分.
三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得累加分.
四、只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分?jǐn)?shù).
一、選擇題(每小題5分,滿分60分)
1.C 2.D 3.D 4.C 5.B 6.B 7.A 8.D 9.B 10.B 11.A 12.C
簡答與提示:
1.,故選C.
2.∵
∴,故選D.
3.因為四個命題均有線在面內(nèi)的可能,所以均不正確,故選D.
4.,故選C.
5.利用疊加法及等比數(shù)列求和公式,可求得,故選B.
6.以為直徑的圓與圓的公共弦即為所求,直線方程為,故
選B.
7.,將的圖象先向左平移個單位得到
的圖象,再沿軸將橫坐標(biāo)壓縮到原來的倍(縱坐標(biāo)不變)得到的圖象,故選A.
8.在點(0,一1)處目標(biāo)函數(shù)取得最大值為9,故選D.
9.先在后三位中選兩個位置填兩個數(shù)字“
法,再決定用數(shù)字“
故選B.
10.依題意,∴,故選B.
11.因為函數(shù)在其定義域內(nèi)為減函數(shù),所以
恒成立,即為減函數(shù)(切線斜率減小),故選A.
12.,
∵,∴,當(dāng)A、F、B
三點共線時取得最小值,故選C.
二、填空題(每題5分.共20分}
13.3 14. 15.28 16.①③
簡答與提示:
13.∵V正四面體 ,∴.
14.∵,∴,∴.
15.∵,
∴,∴.
16.∵,
∴,
∵,
∴,故①③正確.
三、解答題(滿分70分)
17.本小題主要考查三角函數(shù)的基本公式、三角恒等變換、三角函數(shù)圖象及性質(zhì).
解:(1)∵
(4分)
∴.
(2)當(dāng),即時,, , (6分)
當(dāng),即,,
∴函數(shù)的值域為[,1]. (10分)
18.本小題主要考查概率的基本知識與分類思想,考查運用數(shù)學(xué)知識分析問題解決問題的
能力.
解.(1)中一等獎的概率為, (2分)
中二等獎的概率為, (4分)
中三等獎的概率為, (6分)
∴搖獎一次中獎的概率為 (7分)
(2) 由(1)可知,搖獎一次不中獎的概率為 (9分)
設(shè)搖獎一次莊家所獲得的金額為隨機變量,則隨機變量的分布列為:
∴
∴搖獎一次莊家獲利金額的期望值為元 (12分)
19.本小題主要考查空間線面位置關(guān)系、異面直線所成角、二面角等基本知識,考查空間想象能力、邏輯思維能力和運算能力以及空間向量的應(yīng)用.
解法一:(1)證明:
取中點為,連結(jié)、,
∵△是等邊三角形,
∴
又∵側(cè)面底面,
∴底面,
∴為在底面上的射影,
又∵,
,
∴,
∴,
∴,
∴.
(2)取中點,連結(jié)、, (6分)
∵.
∴.
又∵,,
∴平面,
∴,
∴是二面角的平面角. (9分)
∵,,
∴.
∴,
∴,
∴,
∴二面角的大小為 (12分)
解法二:證明:(1) 取中點為,中點為,連結(jié),
∵△是等邊三角形,
∴,
又∵側(cè)面底面,
∴底面,
∴以為坐標(biāo)原點,建立空間直角坐標(biāo)系
如圖, (2分)
∵,△是等邊三角形,
∴,
∴.
∴.
∵
∴.
(2)設(shè)平面的法向量為
∵
∴
令,則,∴ (8分)
設(shè)平面的法向量為,
∵,
∴,
令,則,∴ (10分)
∴,
∴,
∴二面角的大小為. (12分)
20.本小題主要考查直線、橢圓等平面解析幾何的基礎(chǔ)知識,考查軌跡的求法以及綜合解題能力
解:(1)設(shè),則
∵,∴,∴, (3分)
又,∴
∴曲線的方程為 (6分)
(2)由(1)可知, (4,0)為橢圓的右焦點,設(shè)直線方程為
,由消去得,,
∴ (9分)
∴
,
當(dāng),即時取得最大值,
此時直線方程為. (12分)
21.本小題主要考察等差數(shù)列定義、通項、數(shù)列求和、不等式等基礎(chǔ)知識,考察綜合分析問題的能力和推理論證能力.
解:(1)∵,
∴ (2分)
∴,
∵ ∴. (4分)
∵∴,∴,
∴,
∴數(shù)列是以2為首項,以1為公差的等差數(shù)列,
∴,∴,
∴. (7分)
(2),
∵
∴ (10分)
當(dāng)時,
,
當(dāng)時,,
∴. (12分)
22.本小題主要考查函數(shù)的單調(diào)性、最值、不等式等基礎(chǔ)知識,考查運用導(dǎo)數(shù)研究函數(shù)性質(zhì)
的方法,考查分析問題和解決問題的能力.
解:(1)∵
∴, (1分)
設(shè).
∴,
∴(1+z)在上為減函數(shù). (3分)
∴,
∴,
∴函數(shù)在上為減函數(shù). (5分)
(2)在上恒成立,
在上恒成立, (6分)
設(shè),則,
∴, (7分)
若,則時,
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com