A.1 B.2 C. D.5 查看更多

 

題目列表(包括答案和解析)

[    ]

A[15]         B(1,2) ( 2,5]

C.[122,5]   D. (15)

 

查看答案和解析>>

精英家教網(wǎng)A.選修4-1:幾何證明選講
銳角三角形ABC內(nèi)接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
AB
于點(diǎn)E,連接EC,求∠OEC.
B.選修4-2:矩陣與變換
曲線C1=x2+2y2=1在矩陣M=[
12
01
]的作用下變換為曲線C2,求C2的方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程
P為曲線C1
x=1+cosθ
y=sinθ
(θ為參數(shù))上一點(diǎn),求它到直線C2
x=1+2t
y=2
(t為參數(shù))距離的最小值.
D.選修4-5:不等式選講
設(shè)n∈N*,求證:
C
1
n
+
C
2
N
+L+
C
N
N
n(2n-1)

查看答案和解析>>

A.選修4-1:幾何證明選講
如圖,△ABC的外接圓的切線AE與BC的延長(zhǎng)線相交于點(diǎn)E,∠BAC的平分線與BC
交于點(diǎn)D.求證:ED2=EB•EC.
B.選修4-2:矩陣與變換
求矩陣M=
-14
26
的特征值和特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在以O(shè)為極點(diǎn)的極坐標(biāo)系中,直線l與曲線C的極坐標(biāo)方程分別是ρcos(θ+
π
4
)=
3
2
2
和ρsin2θ=4cosθ,直線l與曲線C交于點(diǎn).A,B,C,求線段AB的長(zhǎng).
D.選修4-5:不等式選講
對(duì)于實(shí)數(shù)x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

查看答案和解析>>

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB的中點(diǎn).
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對(duì)應(yīng)的一個(gè)特征向量為,點(diǎn)P(2,-1)在矩陣A對(duì)應(yīng)的變換下得到點(diǎn)P′(5,1),求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為,曲線C的參數(shù)方程為(α為參數(shù)),求曲線C截直線l所得的弦長(zhǎng).
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

[    ]

A.5∶1   B.4∶1   C.3∶1   D.2∶1

查看答案和解析>>

說(shuō)明:

    一、本解答給出一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題

的主要考查內(nèi)容比照評(píng)分標(biāo)準(zhǔn)制訂相應(yīng)的評(píng)分細(xì)則.

    二、對(duì)計(jì)算題當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后續(xù)部分的解答未改變?cè)擃}的

內(nèi)容和難度,可視影響的程度決定給分,但不得超過(guò)該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如

果后續(xù)部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.

    三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得累加分.

    四、只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分?jǐn)?shù).

一、選擇題(每小題5分,滿分60分)

1.C   2.D   3.D   4.C   5.B   6.B   7.A   8.D   9.B   10.B  11.A  12.C

簡(jiǎn)答與提示:

1.,故選C.

2.∵

   ∴,故選D.

3.因?yàn)樗膫(gè)命題均有線在面內(nèi)的可能,所以均不正確,故選D.

4.,故選C.

5.利用疊加法及等比數(shù)列求和公式,可求得,故選B.

6.以為直徑的圓與圓的公共弦即為所求,直線方程為,故

選B.

7.,將的圖象先向左平移個(gè)單位得到

的圖象,再沿軸將橫坐標(biāo)壓縮到原來(lái)的倍(縱坐標(biāo)不變)得到的圖象,故選A.

8.在點(diǎn)(0,一1)處目標(biāo)函數(shù)取得最大值為9,故選D.

9.先在后三位中選兩個(gè)位置填兩個(gè)數(shù)字“0”種填法,再排另兩張卡片有種排

   法,再?zèng)Q定用數(shù)字“9”還是“6”有兩種可能,所以共可排成個(gè)四位數(shù),

   故選B.

10.依題意,∴,故選B.

11.因?yàn)楹瘮?shù)在其定義域內(nèi)為減函數(shù),所以

恒成立,即為減函數(shù)(切線斜率減小),故選A.

12.,

,∴,當(dāng)A、F、B

三點(diǎn)共線時(shí)取得最小值,故選C.

二、填空題(每題5分.共20分}

  13.3      14.      15.28      16.①③

  簡(jiǎn)答與提示:

  13.∵V正四面體 ,∴.

  14.∵,∴,∴

  15.∵,

    ∴,∴

  16.∵,

      ∴,

      ∵,

      ∴,故①③正確.

三、解答題(滿分70分)

  17.本小題主要考查三角函數(shù)的基本公式、三角恒等變換、三角函數(shù)圖象及性質(zhì).

      解:(1)∵

                    (4分)

             ∴

          (2)當(dāng),即時(shí),,       ,    (6分)

             當(dāng),即,,

             ∴函數(shù)的值域?yàn)閇,1].                              (10分)

  18.本小題主要考查概率的基本知識(shí)與分類思想,考查運(yùn)用數(shù)學(xué)知識(shí)分析問(wèn)題解決問(wèn)題的

能力.

      解.(1)中一等獎(jiǎng)的概率為,                         (2分)

            中二等獎(jiǎng)的概率為,                          (4分)

中三等獎(jiǎng)的概率為,                       (6分)

∴搖獎(jiǎng)一次中獎(jiǎng)的概率為                    (7分)

(2) 由(1)可知,搖獎(jiǎng)一次不中獎(jiǎng)的概率為            (9分)

            設(shè)搖獎(jiǎng)一次莊家所獲得的金額為隨機(jī)變量,則隨機(jī)變量的分布列為:

            ∴

∴搖獎(jiǎng)一次莊家獲利金額的期望值為元                      (12分)

19.本小題主要考查空間線面位置關(guān)系、異面直線所成角、二面角等基本知識(shí),考查空間想象能力、邏輯思維能力和運(yùn)算能力以及空間向量的應(yīng)用.

解法一:(1)證明:

               取中點(diǎn)為,連結(jié),

               ∵△是等邊三角形,

               ∴

               又∵側(cè)面底面,

               ∴底面

               ∴在底面上的射影,

               又∵,

               ,

               ∴,

                ∴,

                ∴,

                ∴

(2)取中點(diǎn),連結(jié),                            (6分)

                ∵

                ∴

                又∵,

                ∴平面,

,

是二面角的平面角.                     (9分)

,,

,

,

,

∴二面角的大小為                           (12分)

解法二:證明:(1) 取中點(diǎn)為,中點(diǎn)為,連結(jié)

                ∵△是等邊三角形,

,

又∵側(cè)面底面,

底面,

∴以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系

如圖,    (2分)

,△是等邊三角形,

,

(2)設(shè)平面的法向量為

   ∵

   ∴

,則,∴               (8分)

設(shè)平面的法向量為,              

,

,

,則,∴         (10分)

,

                ∴二面角的大小為.                          (12分)

20.本小題主要考查直線、橢圓等平面解析幾何的基礎(chǔ)知識(shí),考查軌跡的求法以及綜合解題能力

解:(1)設(shè),則

    ∵,∴,∴,               (3分)

,∴

∴曲線的方程為                                     (6分)

(2)由(1)可知, (4,0)為橢圓的右焦點(diǎn),設(shè)直線方程為

,由消去得,,

          (9分)

       ,

當(dāng),即時(shí)取得最大值,

此時(shí)直線方程為.                                (12分)

21.本小題主要考察等差數(shù)列定義、通項(xiàng)、數(shù)列求和、不等式等基礎(chǔ)知識(shí),考察綜合分析問(wèn)題的能力和推理論證能力.

解:(1)∵,

       ∴                                          (2分)

           ∴,   

           ∵  ∴.                              (4分)

           ∵,∴,

           ∴

           ∴數(shù)列是以2為首項(xiàng),以1為公差的等差數(shù)列,

           ∴,∴,

           ∴.                                        (7分)

(2),

  ∵

 

           ∴                                                (10分)

           當(dāng)時(shí),

           ,

           當(dāng)時(shí),

           ∴.                                                (12分)

22.本小題主要考查函數(shù)的單調(diào)性、最值、不等式等基礎(chǔ)知識(shí),考查運(yùn)用導(dǎo)數(shù)研究函數(shù)性質(zhì)

   的方法,考查分析問(wèn)題和解決問(wèn)題的能力.

解:(1)∵

,                                       (1分)

設(shè).

,

(1+z)在上為減函數(shù).                             (3分)

,

,

∴函數(shù)上為減函數(shù).                       (5分)

(2)上恒成立,

          上恒成立,                           (6分)

          設(shè),則,

          ∴,                                              (7分)

          若,則時(shí),

同步練習(xí)冊(cè)答案