AD⊥B1D------4分(2)解:連接DE.∵AA1=AB ∴四邊形A1ABB1是正方形.∴E是A1B的中點. 查看更多

 

題目列表(包括答案和解析)

已知

(1)求函數(shù)上的最小值

(2)對一切的恒成立,求實數(shù)a的取值范圍

(3)證明對一切,都有成立

【解析】第一問中利用

當(dāng)時,單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,

第二問中,,則設(shè),

單調(diào)遞增,,,單調(diào)遞減,,因為對一切,恒成立, 

第三問中問題等價于證明,,

由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時取得

設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立

解:(1)當(dāng)時,單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,

                 …………4分

(2),則設(shè),

,單調(diào)遞增,,單調(diào)遞減,,因為對一切,恒成立,                                             …………9分

(3)問題等價于證明,

由(1)可知的最小值為,當(dāng)且僅當(dāng)x=時取得

設(shè),則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立

 

查看答案和解析>>

(本小題8分)書架上有10本不同的書,其中語文書4本,數(shù)學(xué)書3本,英語書3本,現(xiàn)從中取出3本書.求:

( 1 )3本書中至少有1本是數(shù)學(xué)書的概率;

( 2 ) 3本書不全是同科目書的概率.

    解:(1)3本書中至少有1本是數(shù)學(xué)書的概率為

               (4分)

 或解                      (4分)

   (2)事件“3本書不全是同科目書”的對立事件是事件“3本書是同科目書”,

    而事件“3本書是同科目書”的概率為    (7分

   ∴3本書不全是同科目書的概率              (8分)

 

查看答案和解析>>

設(shè)函數(shù)

(1)當(dāng)時,求曲線處的切線方程;

(2)當(dāng)時,求的極大值和極小值;

(3)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.

【解析】(1)中,先利用,表示出點的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。

解:(1)當(dāng)……2分

   

為所求切線方程!4分

(2)當(dāng)

………………6分

遞減,在(3,+)遞增

的極大值為…………8分

(3)

①若上單調(diào)遞增。∴滿足要求。…10分

②若

恒成立,

恒成立,即a>0……………11分

時,不合題意。綜上所述,實數(shù)的取值范圍是

 

查看答案和解析>>

如圖,,,…,,…是曲線上的點,,,…,,…是軸正半軸上的點,且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點).

(1)寫出、之間的等量關(guān)系,以及之間的等量關(guān)系;

(2)求證:);

(3)設(shè),對所有恒成立,求實數(shù)的取值范圍.

【解析】第一問利用有得到

第二問證明:①當(dāng)時,可求得,命題成立;②假設(shè)當(dāng)時,命題成立,即有則當(dāng)時,由歸納假設(shè)及,

第三問 

.………………………2分

因為函數(shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即

解:(1)依題意,有,,………………4分

(2)證明:①當(dāng)時,可求得,命題成立; ……………2分

②假設(shè)當(dāng)時,命題成立,即有,……………………1分

則當(dāng)時,由歸納假設(shè)及

解得不合題意,舍去)

即當(dāng)時,命題成立.  …………………………………………4分

綜上所述,對所有,.    ……………………………1分

(3) 

.………………………2分

因為函數(shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即

.……………2分

由題意,有. 所以,

 

查看答案和解析>>

已知數(shù)列中,,,數(shù)列中,,且點在直線上。

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和;

(3)若,求數(shù)列的前項和;

【解析】第一問中利用數(shù)列的遞推關(guān)系式

,因此得到數(shù)列的通項公式;

第二問中, 即為:

即數(shù)列是以的等差數(shù)列

得到其前n項和。

第三問中, 又   

,利用錯位相減法得到。

解:(1)

  即數(shù)列是以為首項,2為公比的等比數(shù)列

                  ……4分

(2) 即為:

即數(shù)列是以的等差數(shù)列

         ……8分

(3) 又   

   ①         ②

①-  ②得到

  

 

查看答案和解析>>


同步練習(xí)冊答案