由正方形性質(zhì)知..---5分 查看更多

 

題目列表(包括答案和解析)

第一行是等差數(shù)列0,1,2,3,…,2008,將其相鄰兩項(xiàng)的和依次寫(xiě)下作為第二行,第二行相鄰兩項(xiàng)的和依次寫(xiě)下作為第三行,依此類推,共寫(xiě)出2008行.
0,1,2,3,…,2005,2006,2007,2008
1,3,5,…,4011,4013,4015
4,8,…,8024,8028

(1)由等差數(shù)列性質(zhì)知,以上數(shù)表的每一行都是等差數(shù)列.記各行的公差組成數(shù)列{di}(i=1,2,3…,2008).求通項(xiàng)公式di;
(2)各行的第一個(gè)數(shù)組成數(shù)列{bi}(1,2,3,…,2008),求數(shù)列{bi}所有各項(xiàng)的和.

查看答案和解析>>

第一行是等差數(shù)列0,1,2,3,…,2008,將其相鄰兩項(xiàng)的和依次寫(xiě)下作為第二行,第二行相鄰兩項(xiàng)的和依次寫(xiě)下作為第三行,依此類推,共寫(xiě)出2008行.
0,1,2,3,…,2005,2006,2007,2008
1,3,5,…,4011,4013,4015
4,8,…,8024,8028

(1)由等差數(shù)列性質(zhì)知,以上數(shù)表的每一行都是等差數(shù)列.記各行的公差組成數(shù)列{di}(i=1,2,3…,2008).求通項(xiàng)公式di;
(2)各行的第一個(gè)數(shù)組成數(shù)列{bi}(1,2,3,…,2008),求數(shù)列{bi}所有各項(xiàng)的和.

查看答案和解析>>

第一行是等差數(shù)列0,1,2,3,…,2008,將其相鄰兩項(xiàng)的和依次寫(xiě)下作為第二行,第二行相鄰兩項(xiàng)的和依次寫(xiě)下作為第三行,依此類推,共寫(xiě)出2008行.
0,1,2,3,…,2005,2006,2007,2008
1,3,5,…,4011,4013,4015
4,8,…,8024,8028

(1)由等差數(shù)列性質(zhì)知,以上數(shù)表的每一行都是等差數(shù)列.記各行的公差組成數(shù)列{di}(i=1,2,3…,2008).求通項(xiàng)公式di;
(2)各行的第一個(gè)數(shù)組成數(shù)列{bi}(1,2,3,…,2008),求數(shù)列{bi}所有各項(xiàng)的和.

查看答案和解析>>

如圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過(guò)作圓柱的截面交下底面于.

(1)求證:;

(2)若四邊形ABCD是正方形,求證;

(3)在(2)的條件下,求二面角A-BC-E的平面角的一個(gè)三角函數(shù)值。

【解析】第一問(wèn)中,利用由圓柱的性質(zhì)知:AD平行平面BCFE

又過(guò)作圓柱的截面交下底面于. 

又AE、DF是圓柱的兩條母線

∥DF,且AE=DF    。粒摹危牛

第二問(wèn)中,由線面垂直得到線線垂直。四邊形ABCD是正方形  又

BC、AE是平面ABE內(nèi)兩條相交直線

 

第三問(wèn)中,設(shè)正方形ABCD的邊長(zhǎng)為x,則在

 

由(2)可知:為二面角A-BC-E的平面角,所以

證明:(1)由圓柱的性質(zhì)知:AD平行平面BCFE

又過(guò)作圓柱的截面交下底面于. 

又AE、DF是圓柱的兩條母線

∥DF,且AE=DF    。粒摹危牛 

(2) 四邊形ABCD是正方形  又

BC、AE是平面ABE內(nèi)兩條相交直線

 

(3)設(shè)正方形ABCD的邊長(zhǎng)為x,則在

 

由(2)可知:為二面角A-BC-E的平面角,所以

 

查看答案和解析>>

已知點(diǎn)),過(guò)點(diǎn)作拋物線的切線,切點(diǎn)分別為、(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)為圓心的圓與直線相切,求圓的方程;

(Ⅲ)若直線的方程是,且以點(diǎn)為圓心的圓與直線相切,

求圓面積的最小值.

【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。

中∵直線與曲線相切,且過(guò)點(diǎn),∴,利用求根公式得到結(jié)論先求直線的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。

(3)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值

(Ⅰ)由可得,.  ------1分

∵直線與曲線相切,且過(guò)點(diǎn),∴,即,

,或, --------------------3分

同理可得:,或----------------4分

,∴,. -----------------5分

(Ⅱ)由(Ⅰ)知,,,則的斜率,

∴直線的方程為:,又,

,即. -----------------7分

∵點(diǎn)到直線的距離即為圓的半徑,即,--------------8分

故圓的面積為. --------------------9分

(Ⅲ)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,    ………10分

,

當(dāng)且僅當(dāng),即,時(shí)取等號(hào).

故圓面積的最小值

 

查看答案和解析>>


同步練習(xí)冊(cè)答案