法二:由已知. 所以二面角的平面角的大小為向量與的夾角 查看更多

 

題目列表(包括答案和解析)

如圖,在三棱錐中,平面平面,,,,中點(diǎn).(Ⅰ)求點(diǎn)B到平面的距離;(Ⅱ)求二面角的余弦值.

【解析】第一問(wèn)中利用因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,中點(diǎn),所以

而平面平面,所以平面,再由題設(shè)條件知道可以分別以、、,, 軸建立直角坐標(biāo)系得,,,,

故平面的法向量,故點(diǎn)B到平面的距離

第二問(wèn)中,由已知得平面的法向量,平面的法向量

故二面角的余弦值等于

解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,中點(diǎn),所以

而平面平面,所以平面,

  再由題設(shè)條件知道可以分別以、,軸建立直角坐標(biāo)系,得,,,

,,故平面的法向量

,故點(diǎn)B到平面的距離

(Ⅱ)由已知得平面的法向量,平面的法向量

故二面角的余弦值等于

 

查看答案和解析>>


同步練習(xí)冊(cè)答案