所以 --------14分 查看更多

 

題目列表(包括答案和解析)

(14分)袋中有大小相同的小球6個,其中紅球2個,黃球4個,規(guī)定1個紅球得2分,1個黃球得1分,從袋中任取3個球,記所取3個球的分數(shù)之和為,求隨機變量的分布列和期望以及方差

查看答案和解析>>

( 14分 )已知圓C:x2+y2-2x+4y-4=0,是否存在斜率為1的直線,使以被圓C所截得的弦AB為直徑的圓經(jīng)過原點?若存在,寫出直線的方程;若不存在,請說明理由.

查看答案和解析>>

(12分)

一緝私艇發(fā)現(xiàn)在北偏東方向,距離12 nmile的海面上有一走私船正以10 nmile/h的速度沿東偏南方向逃竄.緝私艇的速度為14 nmile/h, 若要在最短的時間內(nèi)追上該走私船,緝私艇應沿北偏東的方向去追,.求追上所需的時間和角的正弦值.

 

 

查看答案和解析>>

(本題14分)閱讀:設Z點的坐標(a, b),r=||,θ是以x軸的非負半軸為始邊、以OZ所在的射線為終邊的角,復數(shù)z=a+bi還可以表示為z=r(cosθ+isinθ),這個表達式叫做復數(shù)z的三角形式,其中,r叫做復數(shù)z的模,當r≠0時,θ叫做復數(shù)z的幅角,復數(shù)0的幅角是任意的,當0≤θ<2π時,θ叫做復數(shù)z的幅角主值,記作argz

根據(jù)上面所給出的概念,請解決以下問題:

(1)設z=a+bi =r(cosθ+isinθ) (a、bÎR,r≥0),請寫出復數(shù)的三角形式與代數(shù)形式相互之間的轉換關系式;

(2)設z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),探索三角形式下的復數(shù)乘法、除法的運算法則,請寫出三角形式下的復數(shù)乘法、除法的運算法則.(結論不需要證明)

查看答案和解析>>

如圖所示,將數(shù)以斜線作如下分群:(1),(2,3),(4,6,5),(8,12,10,7),(16,24,20,14,9),….并順次稱其為第1群,第2群,第3群,第4群,….則第7群中的第2項是:
96
96
;
1 3 5 7 9
2 6 10 14 18
4 12 20 28 36
8 24 40 56 72
16 48 80 112 114
第n群中n個數(shù)的和是:
3•2n-2n-3
3•2n-2n-3

查看答案和解析>>


同步練習冊答案