個(gè)焦點(diǎn)在邊上.且這個(gè)橢圓過(guò). 兩點(diǎn).則這個(gè)橢圓的焦距長(zhǎng)為 . 查看更多

 

題目列表(包括答案和解析)

已知橢圓=1(a>b>0)的離心率為,短軸一個(gè)端點(diǎn)到上焦點(diǎn)的距離為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)Q(-2,0)作直線l與橢圓C相交于A、B兩點(diǎn),直線m是過(guò)點(diǎn),且以=(0,1)為方向向量的直線,設(shè)N是直線m上一動(dòng)點(diǎn),滿足(O為坐標(biāo)原點(diǎn)).問(wèn)是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

已知橢圓=1(a>b>0)的離心率為,短軸一個(gè)端點(diǎn)到上焦點(diǎn)的距離為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)Q(-2,0)作直線l與橢圓C相交于A、B兩點(diǎn),直線m是過(guò)點(diǎn),且以=(0,1)為方向向量的直線,設(shè)N是直線m上一動(dòng)點(diǎn),滿足(O為坐標(biāo)原點(diǎn)).問(wèn)是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

已知正△ABC,以C點(diǎn)為一個(gè)焦點(diǎn)作一個(gè)橢圓,使這個(gè)橢圓的另一個(gè)焦點(diǎn)在邊AB上,且橢圓過(guò)A、B兩點(diǎn),則這個(gè)橢圓的離心率為
 

查看答案和解析>>

已知正△ABC,以C點(diǎn)為一個(gè)焦點(diǎn)作一個(gè)橢圓,使這個(gè)橢圓的另一個(gè)焦點(diǎn)在邊AB上,且橢圓過(guò)A、B兩點(diǎn),則這個(gè)橢圓的離心率為_(kāi)_____.

查看答案和解析>>

已知正△ABC,以C點(diǎn)為一個(gè)焦點(diǎn)作一個(gè)橢圓,使這個(gè)橢圓的另一個(gè)焦點(diǎn)在邊AB上,且橢圓過(guò)A、B兩點(diǎn),則這個(gè)橢圓的離心率為_(kāi)_____.

查看答案和解析>>

一、             

二、11.210      12.         13.2    14.         15.

三.解答題:

16. 解:(1)

……………………………………………………………3分

由題意得周期,故…………………………………………4分

又圖象過(guò)點(diǎn),所以

,而,所以

……………………………………………………6分

(2)當(dāng)時(shí),

∴當(dāng)時(shí),即時(shí),是減函數(shù)

當(dāng)時(shí),即時(shí),是增函數(shù)

∴函數(shù)的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是………………12分

17.解:記“甲回答對(duì)這道題”、“ 乙回答對(duì)這道題”、“丙回答對(duì)這道題”分別為事件、,則,且有,即

……………………………………………………………………6分

(2)由(1),.

則甲、乙、丙三人中恰有兩人回答對(duì)該題的概率為:

……………………12分

18. 解法一 公理化法

(1)當(dāng)時(shí),取的中點(diǎn),連接,因?yàn)?sub>為正三角形,則,由于的中點(diǎn)時(shí),

平面,∴平面,∴.………………………………………………4分

(2)當(dāng)時(shí),過(guò),如圖所示,則底面,過(guò),連結(jié),則,為二面角的平面角,

,

,

,即二面角的大小為.…………………………………………………8分

(3)設(shè)到面的距離為,則,平面,

即為點(diǎn)到平面的距離,

解得,

到平面的距離為.…………………………………………………………………………12分

解法二 向量法

為原點(diǎn),軸,過(guò)點(diǎn)與垂直的直線為軸,軸,建立空間直角坐標(biāo)系,如圖所示,

設(shè),則

(1)由,

,

,………………………………4分

(2)當(dāng)時(shí),點(diǎn)的坐標(biāo)是

設(shè)平面的一個(gè)法向量,則

,則

又平面的一個(gè)法向量為

又由于二面角是一個(gè)銳角,則二面角的大小是.……………………8分

(3)設(shè)到面的距離為,

到平面的距離為.………………………………………………………………………12分

19. 解:(Ⅰ)由于,

故在點(diǎn)處的切線方程是…………………………………………2分

,故表示同一條直線,

,,.……6分

(Ⅱ) 由于

,所以函數(shù)的單調(diào)區(qū)間是,…………………………8分

 

,

實(shí)數(shù)的取值范圍是.………………………………………………………12分

20. 解:(Ⅰ)設(shè)過(guò)與拋物線的相切的直線的斜率是

則該切線的方程為:

,

都是方程的解,故………………………………………………4分

(Ⅱ)設(shè)

由于,故切線的方程是:,又由于點(diǎn)在上,則

,

,同理

則直線的方程是,則直線過(guò)定點(diǎn).………………………………………8分

(Ⅲ)要使最小,就是使得到直線的距離最小,

到直線的距離,當(dāng)且僅當(dāng)時(shí)取等號(hào).………………………………………………………………10分

設(shè)

,則

.…………13分

21. 解:(Ⅰ)由題意知……1分

 …………3分

檢驗(yàn)知時(shí),結(jié)論也成立

.………………………………………………………………………………4分

(Ⅱ) ①由于

………………………………………………9分

②若,其中,則有,則,

(其中表示不超過(guò)的最大整數(shù)),則當(dāng)時(shí),. ………………………………………………………14分

 

 

 


同步練習(xí)冊(cè)答案