內的任意常數a.是否存在與a 有關的正常數.使得成立?如果存在.求出一個符合條件的,否則說明理由. 查看更多

 

題目列表(包括答案和解析)

如果對于函數f(x)的定義域內任意的x1,x2,都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就稱函數f(x)是定義域上的“平緩函數”.
(1)判斷函數f(x)=x2-x,x∈[0,1]是否是“平緩函數”;
(2)若函數f(x)是閉區(qū)間[0,1]上的“平緩函數”,且f(0)=f(1).證明:對于任意
的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤
12
成立.
(3)設a、m為實常數,m>0.若f(x)=alnx是區(qū)間[m,+∞)上的“平緩函數”,試估計a的取值范圍(用m表示,不必證明).

查看答案和解析>>

如果對于函數f(x)的定義域內任意的x1,x2,都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就稱函數f(x)是定義域上的“平緩函數”.
(1)判斷函數f(x)=x2-x,x∈[0,1]是否是“平緩函數”;
(2)若函數f(x)是閉區(qū)間[0,1]上的“平緩函數”,且f(0)=f(1).證明:對于任意
的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤數學公式成立.
(3)設a、m為實常數,m>0.若f(x)=alnx是區(qū)間[m,+∞)上的“平緩函數”,試估計a的取值范圍(用m表示,不必證明).

查看答案和解析>>

如果對于函數f(x)的定義域內任意的x1,x2,都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就稱函數f(x)是定義域上的“平緩函數”.
(1)判斷函數f(x)=x2-x,x∈[0,1]是否是“平緩函數”;
(2)若函數f(x)是閉區(qū)間[0,1]上的“平緩函數”,且f(0)=f(1).證明:對于任意
的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤
1
2
成立.
(3)設a、m為實常數,m>0.若f(x)=alnx是區(qū)間[m,+∞)上的“平緩函數”,試估計a的取值范圍(用m表示,不必證明).

查看答案和解析>>

如果對于函數f(x)的定義域內任意的x1,x2,都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就稱函數f(x)是定義域上的“平緩函數”.
(1)判斷函數f(x)=x2-x,x∈[0,1]是否是“平緩函數”;
(2)若函數f(x)是閉區(qū)間[0,1]上的“平緩函數”,且f(0)=f(1).證明:對于任意
的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.
(3)設a、m為實常數,m>0.若f(x)=alnx是區(qū)間[m,+∞)上的“平緩函數”,試估計a的取值范圍(用m表示,不必證明).

查看答案和解析>>

已知函數y=f(x),x∈D,如果對于定義域D內的任意實數x,對于給定的非零常數m,總存在非零常數T,恒有f(x+T)>m•f(x)成立,則稱函數f(x)是D上的m級類增周期函數,周期為T.若恒有f(x+T)=m•f(x)成立,則稱函數f(x)是D上的m級類周期函數,周期為T.
(1)試判斷函數f(x)=數學公式是否為(3,+∞)上的周期為1的2級類增周期函數?并說明理由;
(2)已知函數f(x)=-x2+ax是[3,+∞)上的周期為1的2級類增周期函數,求實數a的取值范圍;
(3)下面兩個問題可以任選一個問題作答,如果你選做了兩個,我們將按照問題(Ⅰ)給你記分.
(Ⅰ)已知T=1,y=f(x)是[0,+∞)上m級類周期函數,且y=f(x)是[0,+∞)上的單調遞增函數,當x∈[0,1)時,f(x)=2x,求實數m的取值范圍.
(Ⅱ)已知當x∈[0,4]時,函數f(x)=x2-4x,若f(x)是[0,+∞)上周期為4的m級類周期函數,且y=f(x)的值域為一個閉區(qū)間,求實數m的取值范圍.

查看答案和解析>>

 

一、選擇題(每小題5 分,共40 分)

DCABD  ABC

二、填空題(每小題5 分,共35分)

9.     10.     11.91    12.②④

13.     14.(i)(2分)    (ii)(3分)

15.(i)(3分);    (ii) (2分)

  • <noscript id="ogcgq"><cite id="ogcgq"></cite></noscript>

    20090401

    ,2 分

    8,3 分

    解得;……………………4分分

    (2)

     ………………6分

    …………8分

    由余弦定理得

     ……………………10分

     …………………………12分

    17.解:(1)= 1 表示經過操作以后A 袋中只有一個紅球,有兩種情形出現

    ①先從A 中取出1 紅和1 白,再從B 中取一白到A 中

    ②先從A 中取出2 紅球,再從B 中取一紅球到A 中

    …………………………(5分)

    (2)同(1)中計算方法可知:

    于是的概率分別列

    0

    1

    2

    3

    P

     

    E=……………………12分

    18.解:(1)AB//平面DEF. 在△ABC 中,

    ∵E、F分別是AC、BC 上的點,且滿足

    ∴AB//EF.

      <pre id="ogcgq"><dfn id="ogcgq"></dfn></pre><center id="ogcgq"><del id="ogcgq"></del></center>

      ∴AB//平面DEF. …………3 分

      (2)過D點作DG⊥AC 于G,連結BG,

      ∵AD⊥CD, BD⊥CD,

      ∴∠ADB 是二面角A―CD―B 的平面角.

      ∴∠ADB = 90°, 即BD⊥AD.

      ∴BD⊥平面ADC.

      ∴BD⊥AC.

      ∴AC⊥平面BGD.

      ∴BG⊥AC .

      ∴∠BGD 是二面角B―AC―D 的平面角. 5 分

      在Rt△ADC 中,AD = a,DC = a,AC = 2a,

      在Rt

      即二面角B―AC―D的大小為……………………8分

      (2)∵AB//EF,

      ∴∠DEF(或其補角)是異面直線AB 與DE 所成的角. ………………9 分

      ∵AB =

      ∴EF=  ak .

      又DC = a,CE = kCA = 2ak,

      ∴DF= DE =

      ………………4分

      ∴cos∠DEF=………………11分

      …………………………12分

      19.解:(1)依題意建立數學模型,設第n 次服藥后,藥在體內的殘留量為an(毫克)

      a1 = 220,a2 =220×1.4 ……………………2 分

      a4 = 220 + a2 (1-0.6) = 343.2 ……………………5 分

      (2)由an = 220 + 0.4an―1 (n≥2 ),

      可得

      所以()是一個等比數列,

      不會產生副作用……………………13分

      20.解:(1)由條件知:

      ……………………2分

      b=1,

      ∴橢圓C的方程為:……………………4分

      (2)依條件有:………………5分

      …………7分

      ,

      ………………7分

      …………………………9分

      由弦長公式得

          得

      =

       …………………………13分

      21.解:(1)當

      上單調遞增,

      ……………………5分

      (2)(1),

      需求一個,使(1)成立,只要求出

      的最小值,

      滿足

      上↓

      ↑,

      只需證明內成立即可,

      為增函數

      ,故存在與a有關的正常數使(1)成立。13分

       


      同步練習冊答案