題目列表(包括答案和解析)
已知等于 ( )
A.0 B.-1 C.2 D.1
已知等于( )
A.0 B.-1 C.2 D.1
已知H(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)M在直線PQ上,且滿足
⑴當(dāng)點(diǎn)P在y軸上移動時,求點(diǎn)M的軌跡C;
⑵過點(diǎn)T(-1,0)作直線l與軌跡C交于A、B兩點(diǎn),若在x軸上存在一點(diǎn)E(x0,0),使得△ABE是等邊三角形,求x0的值.
已知橢圓C:+=1(a>b>0)的左.右焦點(diǎn)為F1、F2,離心率為e. 直線l:y=ex+a與x軸.y軸分別交于點(diǎn)A、B,M是直線l與橢圓C的一個公共點(diǎn),P是點(diǎn)F1關(guān)于直線l的對稱點(diǎn),設(shè)=λ.
(Ⅰ)證明:λ=1-e2;
(Ⅱ)確定λ的值,使得△PF1F2是等腰三角形.
已知0<b<1+a,若關(guān)于x的不等式(x-b)2>(ax)2的解集中的整數(shù)恰有3個,則( )
A.-1<a<0 B.0<a<1 C.1<a<3 D.3<a<6
一、選擇題(每小題5 分,共40 分)
DACDA DBA
二、填空題(每小題5 分,共35分)
9. 10.400 11.180 12.②④
13. 14.(i)(3分) (ii)(2分)
15.(i)(3分); (ii) (2分)
16.(1)
當(dāng)
……………………4分
(2)令 ………………6分
解得:
所以,的單調(diào)遞增區(qū)間是…………8分
(3)由,……………………10分
所以,
解得:
所以,的取值集合……12分
17.解:(1)坐A 班車的三人中恰有2 人正點(diǎn)到達(dá)的概率為
P3(2)= C0.72×0.31 = 0.441 ……………………(6 分)
(2)記“A 班車正點(diǎn)到達(dá)”為事件M,“B 班車正點(diǎn)到達(dá)冶為事件N
則兩人中至少有一人正點(diǎn)到達(dá)的概率為
P = P(M?N)+ P(M?)+ P(?N)
= 0.7 ×0.75 + 0.7 ×0.25 + 0.3 ×0.75 = 0.525 + 0.175 + 0.225 = 0.925 (12 分)
18.解:由已知得
所以數(shù)列{}是以1為首項,公差為1的等差數(shù)列;(2分)
即=1+…………………………4分
(2)由(1)知 ……………………6分
…………………………8分
……………………10分
所以:…………………………12分
19.解:M、N、Q、B的位置如右圖示。(正確標(biāo)出給1分)
(1)∵ND//MB且ND=MB
∴四邊形NDBM為平行四邊形
∴MN//DB………………3分
∴BD平面PBD,MN
∴MN//平面PBD……………………4分
(2)∵QC⊥平面ABCD,BD平面ABCD,
∴BD⊥QC……………………5分
又∵BD⊥AC,
∴BD⊥平面AQC…………………………6分
∵AQ面AQC
∴AQ⊥BD,同理可得AQ⊥PB,
∵BDPD=B
∴AQ⊥面PDB……………………………8分
|