即×32+3―>.解得K<18.所以K的取值范圍為5 <K<18 查看更多

 

題目列表(包括答案和解析)

(2011•自貢)閱讀下面例題的解答過程,體會(huì)、理解其方法,并借鑒該例題的解法解方程.
例:解方程x2-|x-1|-1=0
解:(1)當(dāng)x-1≥0即x≥1時(shí).|x-1|=x-1,
原方程化為x2-(x-1)-1=0,即x2-x=0,
解得x1=0,x2=1.
∵x≥1,故x=0舍去,x=1是原方程的解
(2)當(dāng)x-1<0即x<1時(shí).|x-1|=-(x-1),
原方程化為x2+(x-1)-1=0,即x2+x-2=0,
解得x1=1,x2=-2.
∵x<1,故x=1舍去,x=-2是原方程的解.
綜上所述,原方程的解為x1=1,x2=-2.
解方程:x2+2|x+2|-4=0.

查看答案和解析>>

21、閱讀例題,模擬例題解方程.
例:解方程x2+|x-1|-1=0.
解:(1)當(dāng)x-1≥0即x≥1時(shí),原方程可化為:x2+(x-1)-1=0即x2+x-2=0,解得x1=1,x2=-2(x2不合題意,舍去);
(2)當(dāng)x-1<0即x<1時(shí),原方程可化為:x2-(x-1)-1=0即x2-x=0,解得x3=0,x4=1(x4不合題意,舍去).
綜合(1)、(2)可知原方程的根是x1=1,x2=0.
請(qǐng)模擬以上例題解方程:x2+|x+3|-9=0.

查看答案和解析>>

9、若關(guān)于x的一元二次方程x2+(m+1)x+m+4=0兩實(shí)根的平方和為2,求m的值.
解:設(shè)方程的兩實(shí)根為x1,x2,那么x1+x2=m+1,x1x2=m+4.
∴(x12+(x22=( x1+x22-2x1x2=(m+1)2-2(m+4)=m2-7=2,即m2=9,
解得m=3.
答:m的值是3.
請(qǐng)把上述解答過程的錯(cuò)誤或不完整之處,寫在橫線上,并給出正確解答.
答:錯(cuò)誤或不完整之處有:
①x1+x2=m+1;②m=3;③沒有用判別式判定方程有無實(shí)根

正確解答:
①x1+x2=-(m+1);②m=±3;③用判別式判定方程有無實(shí)根

查看答案和解析>>

解方程(x-1)2-5(x-1)+4=0時(shí),我們可以將x-1看成一個(gè)整體,設(shè)x-1=y 則原方程可化為y2-5y+4=0 解得y1=1,y2=4.當(dāng)y=1
時(shí),即x-1=1解得x=2;當(dāng)y=4時(shí),即x-1=4,解得x=5,所以原方程的解為x1=2,x2=5.請(qǐng)利用這種方法解方程(3x+5)2-4(3x+5)+3=0.

查看答案和解析>>

解方程:9x2-6x+1=0,
解:9x2-6x+1=0,
所以(3x-1)2=0,
即3x-1=0,
解得x1=x2=
 

查看答案和解析>>


同步練習(xí)冊(cè)答案