(3)設(shè)直線(為自然數(shù))與曲線和的交點分別為和.問是否存在正整數(shù).使得?若存在.求出,若不存在.請說明理由. (本小題參考數(shù)據(jù)≈2.7) . 查看更多

 

題目列表(包括答案和解析)

已知曲線C1y=
x2e
+e
(e為自然對數(shù)的底數(shù)),曲線C2:y=2elnx和直線l:y=2x.
(1)求證:直線l與曲線C1,C2都相切,且切于同一點;
(2)設(shè)直線x=t(t>0)與曲線C1,C2及直線l分別相交于M,N,P,記f(t)=|PM|-|NP|,求f(t)在[e-3,e3]上的最大值;
(3)設(shè)直線x=em(m=0,1,2,3┅┅)與曲線C1和C2的交點分別為Am和Bm,問是否存在正整數(shù)n,使得A0B0=AnBn?若存在,求出n;若不存在,請說明理由. (本小題參考數(shù)據(jù)e≈2.7).

查看答案和解析>>

已知曲線C1:y=ax2+b和曲線C2:y=2blnx(a,b∈R)均與直線l:y=2x相切.
(1)求實數(shù)a、b的值;
(2)設(shè)直線x=t(t>0)與曲線C1,C2及直線l分別相交于點M,N,P,記f(t)=|MP|-|NP|,求f(t)在區(qū)間(0,e](e為自然對數(shù)的底)上的最大值.

查看答案和解析>>

已知曲線C1:y=
x2e
+e(e為自然對數(shù)的底數(shù)),曲線C2:y=2elnx和直線m:y=2x.
(I)求證:直線m與曲線C1、C2都相切,且切于同一點;
(II)設(shè)直線x=t(t>0)與曲線C1、C2及直線m分別交于M、N、P,記f(t)=|MP|-|PN|,求f(t)在[e-3,e3]上的最大值.

查看答案和解析>>

已知曲線C1:y=數(shù)學(xué)公式+e(e為自然對數(shù)的底數(shù)),曲線C2:y=2elnx和直線m:y=2x.
(I)求證:直線m與曲線C1、C2都相切,且切于同一點;
(II)設(shè)直線x=t(t>0)與曲線C1、C2及直線m分別交于M、N、P,記f(t)=|MP|-|PN|,求f(t)在[e-3,e3]上的最大值.

查看答案和解析>>

已知曲線C1y=
x2
e
+e
(e為自然對數(shù)的底數(shù)),曲線C2:y=2elnx和直線l:y=2x.
(1)求證:直線l與曲線C1,C2都相切,且切于同一點;
(2)設(shè)直線x=t(t>0)與曲線C1,C2及直線l分別相交于M,N,P,記f(t)=|PM|-|NP|,求f(t)在[e-3,e3]上的最大值;
(3)設(shè)直線x=em(m=0,1,2,3┅┅)與曲線C1和C2的交點分別為Am和Bm,問是否存在正整數(shù)n,使得A0B0=AnBn?若存在,求出n;若不存在,請說明理由. (本小題參考數(shù)據(jù)e≈2.7).

查看答案和解析>>

1.解:依題設(shè)有:     ………………………………………4分

 令,則           …………………………………………5分

           …………………………………………7分

  ………………………………10分

2.解:以有點為原點,極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.(1),,由

所以

為圓的直角坐標(biāo)方程.  ……………………………………3分

同理為圓的直角坐標(biāo)方程. ……………………………………6分

(2)由      

相減得過交點的直線的直角坐標(biāo)方程為. …………………………10分

3.(必做題)(本小題滿分10分)

解:(1)記“恰好選到1個曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動的同學(xué)”為事件的, 則其概率為                …………………………………………4分

    答:恰好選到1個曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動的同學(xué)的概率為

(2)隨機變量

                        ……………………5分

                   …………………………6分

                  ………………………………7分

∴隨機變量的分布列為

 

2

3

4

P

                    …………………………10分

4.(必做題)(本小題滿分10分)

(1),,,  ,

              ……………………………………3分

(2)平面BDD1的一個法向量為

設(shè)平面BFC1的法向量為

得平面BFC1的一個法向量

  ∴所求的余弦值為    ……6分

(3)設(shè)

,由

,

    

當(dāng)時,

當(dāng)時,∴   ……………………………………10分


同步練習(xí)冊答案