知.當(dāng)時.將其代入①.②并整理得: 查看更多

 

題目列表(包括答案和解析)

閱讀下面的文言文,完成下面5題。

李斯論  (清)姚鼐

蘇子瞻謂李斯以荀卿之學(xué)亂天下,是不然。秦之亂天下之法,無待于李斯,斯亦未嘗以其學(xué)事秦。

20070327

 
當(dāng)秦之中葉,孝公即位,得商鞅任之。商鞅教孝公燔《詩》、《書》,明法令,設(shè)告坐之過,而禁游宦之民。因秦國地形便利,用其法,富強數(shù)世,兼并諸侯,迄至始皇。始皇之時,一用商鞅成法而已,雖李斯助之,言其便利,益成秦亂,然使李斯不言其便,始皇固自為之而不厭。何也?秦之甘于刻薄而便于嚴(yán)法久矣,其后世所習(xí)以為善者也。斯逆探始皇、二世之心,非是不足以中侈君張吾之寵。是以盡舍其師荀卿之學(xué),而為商鞅之學(xué);掃去三代先王仁政,而一切取自恣肆以為治,焚《詩》、《書》,禁學(xué)士,滅三代法而尚督責(zé),斯非行其學(xué)也,趨時而已。設(shè)所遭值非始皇、二世,斯之術(shù)將不出于此,非為仁也,亦以趨時而已。

君子之仕也,進(jìn)不隱賢;小人之仕也,無論所學(xué)識非也,即有學(xué)識甚當(dāng),見其君國行事,悖謬無義,疾首嚬蹙于私家之居,而矜夸導(dǎo)譽于朝庭之上,知其不義而勸為之者,謂天下將諒我之無可奈何于吾君,而不吾罪也;知其將喪國家而為之者,謂當(dāng)吾身容可以免也。且夫小人雖明知世之將亂,而終不以易目前之富貴,而以富貴之謀,貽天下之亂,固有終身安享榮樂,禍遺后人,而彼宴然無與者矣。嗟乎!秦未亡而斯先被五刑夷三族也,其天之誅惡人,亦有時而信也邪!

且夫人有為善而受教于人者矣,未聞為惡而必受教于人者也。荀卿述先王而頌言儒效,雖間有得失,而大體得治世之要。而蘇氏以李斯之害天下罪及于卿,不亦遠(yuǎn)乎?行其學(xué)而害秦者,商鞅也;舍其學(xué)而害秦者,李斯也。商君禁游宦,而李斯諫逐客,其始之不同術(shù)也,而卒出于同者,豈其本志哉!宋之世,王介甫以平生所學(xué),建熙寧新法,其后章惇、曾布、張商英、蔡京之倫,曷嘗學(xué)介甫之學(xué)耶?而以介甫之政促亡宋,與李斯事頗相類。夫世言法術(shù)之學(xué)足亡人國,固也。吾謂人臣善探其君之隱,一以委曲變化從世好者,其為人尤可畏哉!尤可畏哉!

 [注釋]①宴然:安閑的樣子。②諫逐客:秦始皇曾發(fā)布逐客令,驅(qū)逐六國來到秦國做官的人,李斯寫了著名的《諫逐客書》,提出了反對意見。

對下列句子中加點的詞語的解釋,不正確的一項是(    )

    A.非是不足以中侈君張吾之寵         中:符合

    B.滅三代法而尚督責(zé)                 尚:崇尚

    C.知其不義而勸為之者               勸:鼓勵

    D.而終不以易目前之富貴             易:交換

下列各組句子中,加點的詞的意義和用法相同的一組是(    )

A.因秦國地形便利             不如因普遇之

    B.設(shè)所遭值非始皇、二世       非其身之所種則不食

    C.且夫小人雖明知世之將亂       臣死且不避,卮酒安足辭

    D.不亦遠(yuǎn)乎                     王之好樂甚,則齊國其庶幾乎

下列各項中,加點詞語與現(xiàn)代漢語意義不相同的一項是(    )

    A.小人之仕也,無論所學(xué)識非也

    B.而大體得治世之要

C.而以富貴之謀,貽天下之亂

    D.一以委曲變化從世好者

下列各句中對文章的闡述,不正確的一項是(    )

A.蘇軾認(rèn)為李斯以荀卿之學(xué)輔佐秦朝行暴政,致使天下大亂,作者則認(rèn)為李斯是完全舍棄了荀子的說學(xué),李斯的做法只不過是追隨時勢罷了。

B.作者由論李斯事秦進(jìn)而泛論人臣事君的問題,強調(diào)為臣者對于國君的“悖謬無義”之政,不應(yīng)為自身的富貴而阿附甚至助長之。

C.此文主旨在于指出秦行暴政是君王自身的原因,作者所論的不可“趨時”,“中侈君張吾之寵”的道理,在今天仍有借鑒意義。

D.文章開門見山,擺出蘇軾的觀點,然后通過對秦國發(fā)展歷史的分析,駁斥了蘇說的謬論,提出了自己的見解。論證嚴(yán)密,逐層深入,是一篇典范的史論。

把文言文閱讀材料中畫橫線的句子翻譯成現(xiàn)代漢語。

   (1)秦之甘于刻薄而便于嚴(yán)法久矣

譯文:                                                                    

   (2)謂天下將諒我之無可奈何于吾君,而不吾罪也

譯文:                                                                   

   (3)其始之不同術(shù)也,而卒出于同者,豈其本志哉

譯文:                                                                   

查看答案和解析>>

一、選擇題

1-5 BBAB 文B理A  6-10 ADCBC 11-12文B理D A

6.A 提示:設(shè),則表示點與點(0,0)連線的斜率.當(dāng)該直線kx-y=0與圓相切時,取得最大值與最小值.圓心(2,0),由=1,解得,∴的最大值為.11.(文) B 

11.(文) A       提示:拋物線的焦點為F(1,0),作PA垂直于準(zhǔn)線x=-1,則

|PA|=|PF|,當(dāng)A、P、Q在同一條直線上時,

|PF|+|PQ|=|PA|+|PQ|=|AQ|,

此時,點P到Q點距離與拋物線焦點距離之和取得最小值,

P點的縱坐標(biāo)為-1,有1=4x,x=,此時P點坐標(biāo)為(,-1),故選A。

11.(理) B提示:設(shè)

12.A    提示:如右圖所示,設(shè)點P的坐標(biāo)為(x0,y0),由拋物線以F2為頂點,F1為焦點,可得其準(zhǔn)線的方

程為x=3c, 根據(jù)拋物線的定義可得|PF1|=|PR|=3c-x0,又由點P為雙曲線上的點,根據(jù)雙曲線的第二定義可得=e, 即得|PF2|=ex0-a, 由已知a|PF2|+c|PF1|=8a2,可得-a2+3c2=8a2,即e2=3,由e>1可得e=, 故應(yīng)選A.

二、填空題:13-16文    3   35

 

 

 

 

 

 

九、實戰(zhàn)演習(xí)

一  選擇題

1.與圓相切,且在兩坐標(biāo)軸上截距相等的直線共有 (   )

A.2條          B.3條         C.4條        D.6條

1.C提示: 在兩坐標(biāo)軸上截距相等的直線有兩類:①直線過原點時,有兩條與已知圓相切;②直線不過原點時,設(shè)其方程為,也有兩條與已知圓相切.易知①、②中四條切線互不相同,故選C.

2.在中,三內(nèi)角所對的邊是成等差數(shù)列,那么直線與直線的位置關(guān)系是  (        )

A.平行        B.重合       C.垂直      D.相交但不垂直

2.B提示:成等差數(shù)列,

,

,故兩直線重合。選B。

3.已知函數(shù),集合,集合,則集合的面積是      

A.             B.            C.            D.

3.D提示: 集合即為:,集合即為: ,其面積等于半圓面積。

4.(文)已知直線m:交x軸于M,E是直線m上的點,N(1,0),又P在線段EN的垂直平分線上,且,則動點P的軌跡是(  )

A.圓   B.橢圓   C.雙曲線    D.拋物線

4.(文)D.

4.(理)已知P在雙曲線上變動,O是坐標(biāo)原點,F(xiàn)是雙曲線的右焦點,則的重心G的軌跡方程是(  )

A.    B.

C.     D.

4.(理)C.提示:雙曲線焦點坐標(biāo)是F(6,0).設(shè)雙曲線上任一點P(x0,y0), 的重心G(x,y),則由重心公式,

,解得,代入,得為所求.

5.已知是三角形的一個內(nèi)角,且,則方程表示(  。

A.焦點在軸上的橢圓     B.焦點在軸上的橢圓

C.焦點在軸上的雙曲線    D.焦點在軸上的雙曲線

5.B提示:由,又是三角形的一個內(nèi)角,故,

再由,

結(jié)合解得

故方程表示焦點在軸上的橢圓。選B。

或者結(jié)合單位圓中的三角函數(shù)線直接斷定。

6.過拋物線的焦點作一條直線與拋物線相交于A、B兩點,它們的橫坐標(biāo)之和等于5,則這樣的直線                        。    )

A.有且僅有一條     B.有且僅有兩條      C.有無窮多條      D.不存在

6.B提示:該拋物線的通徑長為4,而這樣的弦AB的長為,故這樣的直線有且僅有兩條。選B。

或者(1)當(dāng)該直線的斜率不存在時,它們的橫坐標(biāo)之和等于2;

(2)當(dāng)該直線的斜率存在時,設(shè)該直線方程為,代入拋物線方程得

,由。故這樣的直線有且僅有兩條。

7.一個橢圓中心在原點,焦點軸上,(2,)是橢圓上一點,且成等差數(shù)列,則橢圓方程為           。ā  。

A.     B.    C.     D.

7.A提示:設(shè)橢圓方程為,由成等差數(shù)列知,從而,故橢圓方程為,將P點的坐標(biāo)代入得,故所求的橢圓方程為。選A。

8.以A(4,3,1),B(7,1,2),C(5,2,3)為頂點的三角形形狀為(  )

A .直角三角形  B. 等腰三角形   C.非等腰三角形三角形   D.等邊三角形

8. B.提示:由兩點間距離公式,得,,故選B.

9. 若直線與雙曲線的右支交于不同的兩點,則k的取值范圍是(。

A.,   B.,     C.,   D.,

9.D提示:特別注意的題目。將直線代入雙曲線方程

若直線與雙曲線的右支交于不同的兩點,則應(yīng)滿足

。選D。

10. (文)設(shè)離心率為e的雙曲線的右焦點為F,直線過點F且斜率為K,則直線與雙曲線C左、右支都有相交的充要條件是(  )

A.      B. 

C.      D.

10. (理)已知兩個點M(-5,0)和N(5,0),若直線上存在點P,使|PM|-|PN|=6,則稱該直線為“B型直線”。給出下列直線①。其中屬于“B型直線”的是(      )

A、①③    B、①②     C、③④     D、①④

10. (文)C  提示:由已知設(shè)漸近線的斜率為于是

,即故選C;

10. (理)B 提示:理解為以M、N為焦點的雙曲線,則c=5, 又|PM|-|PN|=6,則a=3,b=4,幾何意義是雙曲線的右支,所謂“B型直線”即直線與雙曲線的右支有交點,又漸近線為:,逐一分析,只有①②與雙曲線右支有交點,故選B;

11.已知雙曲線的左、右焦點分別為,點P在雙曲線上,且,則此雙曲線的離心率的最大值為   (   )

A、      B、     C、     D、2

11.B提示:,由    又

故選B項。

12.若AB過橢圓 + =1 中心的弦, F1為橢圓的焦點, 則△F1AB面積的最大值為(    ) 

A. 6   B.12   C.24   D.48

12.B提示:設(shè)AB的方程為,代入橢圓方程得。選B。

二  填空題

13.橢圓M:=1 (a>b>0) 的左、右焦點分別為F1、F2,P為橢圓M上任一點,且 的最大值的取值范圍是[2c2,3c2],其中. 則橢圓M的離心率e的取值范圍是         

13.

14. 1.1998年12月19日,太原衛(wèi)星發(fā)射中心為摩托羅拉公司(美國)發(fā)射了兩顆“銥星”系統(tǒng)通信衛(wèi)星.衛(wèi)星運行的軌道是以地球中心為一個焦點的橢圓,近地點為m km,遠(yuǎn)地點為  n km,地球的半徑為R km,則通信衛(wèi)星運行軌道的短軸長等于         

           

14. 2提示:  c=m+R+c=n+R,

c=,b=2=2.

15. 已知與曲線C:x2+y2-2x-2y+1=0相切的直線交x、y軸于A、B兩點,O為原點,|OA|=a,|OB|=b,a>2,b>2,線段AB中點的軌跡方程是                               。

15. 提示:滿足(a-2)(b-2)=2。設(shè)AB的中點坐標(biāo)為(x,y), 則a=2x,b=2y, 代入①得(2x-2)(2y-2)=2, 即(x-1)(y-1)= (x>1,y>1)。

    16.以下四個關(guān)于圓錐曲線的命題中

①設(shè)A、B為兩個定點,k為非零常數(shù),,則動點P的軌跡為雙曲線;

②過定圓C上一定點A作該圓的動弦AB,O為坐標(biāo)原點,若則動點的軌跡為橢圓;③方程的兩根可分別作為橢圓和雙曲線的離心率;

④雙曲線有相同的焦點.

其中真命題的序號為                 (寫出所有真命題的序號)

16. ③、④

三  解答題(74分)

17. (本小題滿分12分)已知,直線和圓

(1)求直線斜率的取值范圍;

(2)直線能否將圓分割成弧長的比值為的兩段圓?為什么?

解析:(1)直線的方程可化為,直線的斜率,因為,所以,當(dāng)且僅當(dāng)時等號成立.

所以,斜率的取值范圍是

(2)不能.由(1)知的方程為,其中

的圓心為,半徑.圓心到直線的距離

,得,即.從而,若與圓相交,則圓截直線所得的弦所對的圓心角小于.所以不能將圓分割成弧長的比值為的兩段。

18. (本小題滿分12分)已知A、B分別是橢圓的左右兩個焦點,O為坐標(biāo)原點,點P)在橢圓上,線段PB與y軸的交點M為線段PB的中點。

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)點C是橢圓上異于長軸端點的任意一點,對于△ABC,求的值

18.解:(1)由題意知:

∴橢圓的標(biāo)準(zhǔn)方程為=1.        

(2)∵點C在橢圓上,A、B是橢圓的兩個焦點,

∴AC+BC=2a=,AB=2c=2 .   

在△ABC中,由正弦定理,  ,

.       

19.(本小題滿分12分)已知橢圓的中心在原點,離心率為,一個焦點是(為大于0的常數(shù)).

 (1)求橢圓的方程;

 (2)設(shè)是橢圓上一點,且過點

同步練習(xí)冊答案