13.在等比數(shù)列中. . 若對正整數(shù)都有. 那么公比的取值范圍是 . 查看更多

 

題目列表(包括答案和解析)

在等比數(shù)列{an}中,若對任意正整數(shù)n,都有a1+a2+…+an=2n-1,那么a12+a22+…+an2等于(    )

A.(2n-1)2                             B.(2n-1)2

C.4n-1                                    D. (4n-1)

查看答案和解析>>

在等比數(shù)列{an}中,a1<0,若對正整數(shù)n都有an<an+1,那么公比q的取值范圍是


  1. A.
    q>1
  2. B.
    0<q<1
  3. C.
    q<0
  4. D.
    q<1

查看答案和解析>>

在等比數(shù)列{an}中,a1<0,若對正整數(shù)n都有an<an+1,那么公比q的取值范圍是

[  ]

A.q>1

B.0<q<1

C.q<0

D.q<1

查看答案和解析>>

8、在等比數(shù)列{an}中,a1<0,若對正整數(shù)n都有an<an+1,那么公比q的取值范圍是( 。

查看答案和解析>>

在等比數(shù)列{an}中,記Sn=a1+a2+…+an,已知a2=2S1+1,a3=2S2+1.

(1)求數(shù)列{an}的公比q和首項(xiàng)a1的值;

(2)若常數(shù)P使得對一切正整數(shù)n都有an+1=PSn+1成立,求P的值;

(3)(理)求.

查看答案和解析>>

 

一、選擇題

1. D

解析:∵a3+a7+a11=3a7為常數(shù),

∴S13==13a7,也是常數(shù).

2. C

解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

∴S9∶S3==1+q3+q6=1-+(-)2=.

3.A

4.D  數(shù)列是以2為首項(xiàng),以為公比的等比數(shù)列,項(xiàng)數(shù)為故選D。

5.B

6. D

解析:當(dāng)q=1時(shí),Sn,Sn+1,Sn+2構(gòu)成等差數(shù)列;

當(dāng)q=-2時(shí),Sn+1,Sn,Sn+2構(gòu)成等差數(shù)列;

當(dāng)q=-時(shí),Sn,Sn+2,Sn+1構(gòu)成等差數(shù)列.

7.A   僅②不需要分情況討論,即不需要用條件語句

 

8. D

9. D

解析:易知an=

∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

10.A提示:依題意可得.

11.B,指輸入的數(shù)據(jù).

12.D 

(法一)輾轉(zhuǎn)相除法:         

的最大公約數(shù).

(法二)更相減損術(shù):

        

        ∴的最大公約數(shù).

二、填空題

13.

14.

當(dāng)時(shí),是正整數(shù)。

15.

解析:bn===a1,bn+1=a1,=(常數(shù)).

16.-6

三、解答題

17.解(1)

     

      以3為公比的等比數(shù)列.

 (2)由(1)知,..

      不適合上式,

       .

18.解:(1)an=    (2).

19.解:(1),;

(2)由(1)得,假設(shè)數(shù)列{bn}中存在三項(xiàng)bp,bq,br(p,q,r互不相等)成等比數(shù)列,則

,,,得

∴p=r,矛盾.  ∴數(shù)列{bn}中任意三項(xiàng)都不可能成等比數(shù)列.

20.解:設(shè)未贈禮品時(shí)的銷售量為a0個(gè),而贈送禮品價(jià)值n元時(shí)銷售量為an個(gè),

,

又設(shè)銷售利潤為數(shù)列,

當(dāng),

考察的單調(diào)性,

當(dāng)n=9或10時(shí),最大

答:禮品價(jià)值為9元或10元時(shí)商品獲得最大利潤.

 

21.解析:(1)時(shí),

兩式相減:

故有

。

數(shù)列為首項(xiàng)公比的等比數(shù)列。

(2)

(3)

   ①

   ②

①-②得:

22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=;

(3),d100=2+3×49=149,∴d1, d2,…d50是首項(xiàng)為149,公差為-3的等差數(shù)列.  

當(dāng)n≤50時(shí),

當(dāng)51≤n≤100時(shí),Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                   =3775+(n-50)×2+=

∴綜上所述,.

w.w.w.k.s.5.u.c.o.m

 

 


同步練習(xí)冊答案