題目列表(包括答案和解析)
設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí)f(x)>1,且對任意的實(shí)數(shù)x,y∈R,有
(Ⅰ)求f(0),判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)數(shù)列滿足,且,數(shù)列滿足 w.w.w.k.s.5.u.c.o.m
①求數(shù)列通項(xiàng)公式。
②求數(shù)列的前n項(xiàng)和Tn的最小值及相應(yīng)的n的值.
(北京市西城外語學(xué)!2010屆高三測試)設(shè)函數(shù)f(x)的定義域?yàn)?i>R,當(dāng)x<0時(shí)f(x)>1,且對任意的實(shí)數(shù)x,y∈R,有
(Ⅰ)求f(0),判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)數(shù)列滿足,且,數(shù)列滿足
①求數(shù)列通項(xiàng)公式。
②求數(shù)列的前n項(xiàng)和Tn的最小值及相應(yīng)的n的值.
數(shù)列的前n項(xiàng)和。
(1)求證:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;
(2)如果對任意恒成立,求實(shí)數(shù)k的取值范圍。
【解析】本試題主要是考查了等比數(shù)列的定義的運(yùn)用,以及運(yùn)用遞推關(guān)系求解數(shù)列通項(xiàng)公式的運(yùn)用,并且能借助于數(shù)列的和,放縮求證不等式的綜合試題。
(本小題滿分14分)
已知數(shù)列滿足如圖所示的程序框圖.(Ⅰ)寫出數(shù)列的一個(gè)遞推關(guān)系式;
(Ⅱ)證明:是等比數(shù)列,并求的通項(xiàng)公式;(Ⅲ)求數(shù)列的前項(xiàng)和.
(1)求數(shù)列{an}的首項(xiàng)與遞推關(guān)系式an+1=f(an);
(2)先閱讀下面定理,若數(shù)列{an}有遞推關(guān)系an+1=Aan+B,其中A、B為常數(shù),且A≠1,B≠0,則數(shù)列{an-}是以A為公比的等比數(shù)列,請你在第(1)題的基礎(chǔ)上應(yīng)用本定理,求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{an}的前n項(xiàng)和Sn.
一、選擇題
1. D
解析:∵a3+a7+a11=3a7為常數(shù),
∴S13==13a7,也是常數(shù).
2. C
解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,
∴S9∶S3==1+q3+q6=1-+(-)2=.
3.A ,
又
4.D 數(shù)列是以2為首項(xiàng),以為公比的等比數(shù)列,項(xiàng)數(shù)為故選D。
5.B
6. D
解析:當(dāng)q=1時(shí),Sn,Sn+1,Sn+2構(gòu)成等差數(shù)列;
當(dāng)q=-2時(shí),Sn+1,Sn,Sn+2構(gòu)成等差數(shù)列;
當(dāng)q=-時(shí),Sn,Sn+2,Sn+1構(gòu)成等差數(shù)列.
7.A 僅②不需要分情況討論,即不需要用條件語句
8. D
9. D
解析:易知an=
∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).
10.A提示:依題意可得.
11.B,指輸入的數(shù)據(jù).
12.D
(法一)輾轉(zhuǎn)相除法:
∴是和的最大公約數(shù).
(法二)更相減損術(shù):
∴是和的最大公約數(shù).
二、填空題
13.
14.
當(dāng)時(shí),是正整數(shù)。
15.
解析:bn===a1,bn+1=a1,=(常數(shù)).
16.-6
三、解答題
17.解(1)
以3為公比的等比數(shù)列.
(2)由(1)知,..
不適合上式,
.
18.解:(1)an= (2).
19.解:(1),;
(2)由(1)得,假設(shè)數(shù)列{bn}中存在三項(xiàng)bp,bq,br(p,q,r互不相等)成等比數(shù)列,則 即
∴,,,得
∴p=r,矛盾. ∴數(shù)列{bn}中任意三項(xiàng)都不可能成等比數(shù)列.
20.解:設(shè)未贈禮品時(shí)的銷售量為a0個(gè),而贈送禮品價(jià)值n元時(shí)銷售量為an個(gè),
,
又設(shè)銷售利潤為數(shù)列,
當(dāng),
考察的單調(diào)性,
當(dāng)n=9或10時(shí),最大
答:禮品價(jià)值為9元或10元時(shí)商品獲得最大利潤.
21.解析:(1)時(shí),
即
兩式相減:
即故有
。
數(shù)列為首項(xiàng)公比的等比數(shù)列。
(2)
則
又
(3)
①
而 ②
①-②得:
22.解:(1)b4=b1+3d 即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;
(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=;
(3),d100=2+3×49=149,∴d1, d2,…d50是首項(xiàng)為149,公差為-3的等差數(shù)列.
當(dāng)n≤50時(shí),
當(dāng)51≤n≤100時(shí),Sn=d1+d2+…d50=S50+(d51+d52+…dn)
=3775+(n-50)×2+=
∴綜上所述,.
w.w.w.k.s.5.u.c.o.m
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com