分析:本題考查簡單的遞推數(shù)列通項(xiàng)公式的求法.采用的是“歸納遞推法 .本題也可以將遞推式變形為后.用“迭加 的方法解決.在遞推數(shù)列中這個(gè)題屬于基本類型.是高考命題的一個(gè)基本著眼點(diǎn).考生要熟練掌握這類遞推數(shù)列通項(xiàng)公式的解決方法. 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí)f(x)>1,且對任意的實(shí)數(shù)x,y∈R,有

(Ⅰ)求f(0),判斷并證明函數(shù)f(x)的單調(diào)性;

(Ⅱ)數(shù)列滿足,且,數(shù)列滿足 w.w.w.k.s.5.u.c.o.m    

①求數(shù)列通項(xiàng)公式。

②求數(shù)列的前n項(xiàng)和Tn的最小值及相應(yīng)的n的值.

 

查看答案和解析>>

(北京市西城外語學(xué)!2010屆高三測試)設(shè)函數(shù)f(x)的定義域?yàn)?i>R,當(dāng)x<0時(shí)f(x)>1,且對任意的實(shí)數(shù)x,yR,有

(Ⅰ)求f(0),判斷并證明函數(shù)f(x)的單調(diào)性;

(Ⅱ)數(shù)列滿足,且,數(shù)列滿足

①求數(shù)列通項(xiàng)公式。

②求數(shù)列的前n項(xiàng)和Tn的最小值及相應(yīng)的n的值.

查看答案和解析>>

數(shù)列的前n項(xiàng)和。

   (1)求證:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;

   (2)如果對任意恒成立,求實(shí)數(shù)k的取值范圍。

【解析】本試題主要是考查了等比數(shù)列的定義的運(yùn)用,以及運(yùn)用遞推關(guān)系求解數(shù)列通項(xiàng)公式的運(yùn)用,并且能借助于數(shù)列的和,放縮求證不等式的綜合試題。

 

查看答案和解析>>

(本小題滿分14分)

已知數(shù)列滿足如圖所示的程序框圖(Ⅰ)寫出數(shù)列的一個(gè)遞推關(guān)系式;

(Ⅱ)證明:是等比數(shù)列,并求的通項(xiàng)公式;(Ⅲ)求數(shù)列的前項(xiàng)和

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若對于任意的n∈N*,都有Sn=2an-3n,

(1)求數(shù)列{an}的首項(xiàng)與遞推關(guān)系式an+1=f(an);

(2)先閱讀下面定理,若數(shù)列{an}有遞推關(guān)系an+1=Aan+B,其中A、B為常數(shù),且A≠1,B≠0,則數(shù)列{an-}是以A為公比的等比數(shù)列,請你在第(1)題的基礎(chǔ)上應(yīng)用本定理,求數(shù)列{an}的通項(xiàng)公式;

(3)求數(shù)列{an}的前n項(xiàng)和Sn.

查看答案和解析>>

 

一、選擇題

1. D

解析:∵a3+a7+a11=3a7為常數(shù),

∴S13==13a7,也是常數(shù).

2. C

解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

∴S9∶S3==1+q3+q6=1-+(-)2=.

3.A ,

4.D  數(shù)列是以2為首項(xiàng),以為公比的等比數(shù)列,項(xiàng)數(shù)為故選D。

5.B

6. D

解析:當(dāng)q=1時(shí),Sn,Sn+1,Sn+2構(gòu)成等差數(shù)列;

當(dāng)q=-2時(shí),Sn+1,Sn,Sn+2構(gòu)成等差數(shù)列;

當(dāng)q=-時(shí),Sn,Sn+2,Sn+1構(gòu)成等差數(shù)列.

7.A   僅②不需要分情況討論,即不需要用條件語句

 

8. D

9. D

解析:易知an=

∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

10.A提示:依題意可得.

11.B,指輸入的數(shù)據(jù).

12.D 

(法一)輾轉(zhuǎn)相除法:         

的最大公約數(shù).

(法二)更相減損術(shù):

        

        ∴的最大公約數(shù).

二、填空題

13.

14.

當(dāng)時(shí),是正整數(shù)。

15.

解析:bn===a1,bn+1=a1,=(常數(shù)).

16.-6

三、解答題

17.解(1)

     

      以3為公比的等比數(shù)列.

 (2)由(1)知,..

      不適合上式,

       .

18.解:(1)an=    (2).

19.解:(1),;

(2)由(1)得,假設(shè)數(shù)列{bn}中存在三項(xiàng)bp,bq,br(p,q,r互不相等)成等比數(shù)列,則

,,,得

∴p=r,矛盾.  ∴數(shù)列{bn}中任意三項(xiàng)都不可能成等比數(shù)列.

20.解:設(shè)未贈禮品時(shí)的銷售量為a0個(gè),而贈送禮品價(jià)值n元時(shí)銷售量為an個(gè),

又設(shè)銷售利潤為數(shù)列,

當(dāng),

考察的單調(diào)性,

當(dāng)n=9或10時(shí),最大

答:禮品價(jià)值為9元或10元時(shí)商品獲得最大利潤.

 

21.解析:(1)時(shí),

兩式相減:

故有

數(shù)列為首項(xiàng)公比的等比數(shù)列。

(2)

(3)

   ①

   ②

①-②得:

22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=;

(3),d100=2+3×49=149,∴d1, d2,…d50是首項(xiàng)為149,公差為-3的等差數(shù)列.  

當(dāng)n≤50時(shí),

當(dāng)51≤n≤100時(shí),Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                   =3775+(n-50)×2+=

∴綜上所述,.

w.w.w.k.s.5.u.c.o.m

 

 


同步練習(xí)冊答案