分析:本題有多種解法.一種方法就是求出該等差數(shù)列的前項(xiàng)和的表達(dá)式.由于該等差數(shù)列的公差不等于零.其前項(xiàng)和是關(guān)于的二次函數(shù).考試容易忽視是正整數(shù)的限制條件導(dǎo)致結(jié)果出錯(cuò). 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=
13
x3+ax2+bx+c(a<0)在x=0處取得極值-1.
(1)設(shè)點(diǎn)A(-a,f(-a)),求證:過點(diǎn)A的切線有且只有一條;并求出該切線方程.
(2)若過點(diǎn)(0,0)可作曲線y=f(x)的三條切線,求a的取值范圍;
(3)設(shè)曲線y=f(x)在點(diǎn)(x1,f(x1)),(x2,f(x2))(x1≠x2)處的切線都過點(diǎn)(0,0),證明:f′(x1)≠f′(x2).

查看答案和解析>>

一箱蘋果,4個(gè)4個(gè)地?cái)?shù),最后余下1個(gè);5個(gè)5個(gè)地?cái)?shù),最后余下2個(gè);9個(gè)9個(gè)地?cái)?shù),最后余下7個(gè).請?jiān)O(shè)計(jì)一種算法,求出這箱蘋果至少有多少個(gè)?

查看答案和解析>>

某商場為了吸引顧客,設(shè)計(jì)了一種促銷活動:在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費(fèi)滿200元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回),商場根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價(jià)格的購物券,可以重新在本商場消費(fèi),某顧客剛好消費(fèi)200元.
(1)該顧客至少可得到
 
元購物券,至多可得到
 
元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.

查看答案和解析>>

(本題滿分10分)已知曲線上的動點(diǎn)滿足到點(diǎn)的距離比到直線 的距離小
(1)求曲線的方程;
(2)動點(diǎn)在直線 上,過點(diǎn)作曲線的切線,切點(diǎn)分別為、
(ⅰ)求證:直線恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(ⅱ)在直線上是否存在一點(diǎn),使得為等邊三角形(點(diǎn)也在直線上)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

(本題滿分10分)已知曲線上的動點(diǎn)滿足到點(diǎn)的距離比到直線 的距離小

(1)求曲線的方程;

(2)動點(diǎn)在直線 上,過點(diǎn)作曲線的切線,切點(diǎn)分別為、

(ⅰ)求證:直線恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo);

(ⅱ)在直線上是否存在一點(diǎn),使得為等邊三角形(點(diǎn)也在直線上)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

 

一、選擇題

1. D

解析:∵a3+a7+a11=3a7為常數(shù),

∴S13==13a7,也是常數(shù).

2. C

解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

∴S9∶S3==1+q3+q6=1-+(-)2=.

3.A ,

4.D  數(shù)列是以2為首項(xiàng),以為公比的等比數(shù)列,項(xiàng)數(shù)為故選D。

5.B

6. D

解析:當(dāng)q=1時(shí),Sn,Sn+1,Sn+2構(gòu)成等差數(shù)列;

當(dāng)q=-2時(shí),Sn+1,Sn,Sn+2構(gòu)成等差數(shù)列;

當(dāng)q=-時(shí),Sn,Sn+2,Sn+1構(gòu)成等差數(shù)列.

7.A   僅②不需要分情況討論,即不需要用條件語句

 

8. D

9. D

解析:易知an=

∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

10.A提示:依題意可得.

11.B,指輸入的數(shù)據(jù).

12.D 

(法一)輾轉(zhuǎn)相除法:         

的最大公約數(shù).

(法二)更相減損術(shù):

        

        ∴的最大公約數(shù).

二、填空題

13.

14.

當(dāng)時(shí),是正整數(shù)。

15.

解析:bn===a1,bn+1=a1,=(常數(shù)).

16.-6

三、解答題

17.解(1)

     

      以3為公比的等比數(shù)列.

 (2)由(1)知,..

      不適合上式,

       .

18.解:(1)an=    (2).

19.解:(1);

(2)由(1)得,假設(shè)數(shù)列{bn}中存在三項(xiàng)bp,bq,br(p,q,r互不相等)成等比數(shù)列,則

,,得

∴p=r,矛盾.  ∴數(shù)列{bn}中任意三項(xiàng)都不可能成等比數(shù)列.

20.解:設(shè)未贈禮品時(shí)的銷售量為a0個(gè),而贈送禮品價(jià)值n元時(shí)銷售量為an個(gè),

又設(shè)銷售利潤為數(shù)列,

當(dāng),

考察的單調(diào)性,

當(dāng)n=9或10時(shí),最大

答:禮品價(jià)值為9元或10元時(shí)商品獲得最大利潤.

 

21.解析:(1)時(shí),

兩式相減:

故有

。

數(shù)列為首項(xiàng)公比的等比數(shù)列。

(2)

(3)

   ①

   ②

①-②得:

22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=

(3),d100=2+3×49=149,∴d1, d2,…d50是首項(xiàng)為149,公差為-3的等差數(shù)列.  

當(dāng)n≤50時(shí),

當(dāng)51≤n≤100時(shí),Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                   =3775+(n-50)×2+=

∴綜上所述,.

w.w.w.k.s.5.u.c.o.m

 

 


同步練習(xí)冊答案